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Abstract—We recently proposed a novel fast backprojection al-
gorithm for reconstruction of an pixel object from ( )
projections in ( 2 log

2
) operations. In this paper, we ana-

lyze a simplified version of that algorithm, to determine the ef-
fects of various parameter choices on the algorithm’s theoretical
performance. We derive a bound on the variance of the per-pixel
error introduced by using the hierarchical backprojection. This
bound is with respect to an ensemble of input sinograms, and al-
lows us to construct confidence intervals (for any specified level)
for the per-pixel errors. The bound has a simple form, and we
show how to use it to select algorithm parameters for different
cost versus error tradeoffs. Simulation results show that the bound
accurately predicts the performance of the algorithm over a wide
range of parameter choices. These results are verified for different
images, including a tomographic reconstruction from the visual
human dataset (VHD). The analysis therefore provides an effec-
tive tools for the selection of parameters and operating point for
the fast hierarchical backprojection algorithm.

Index Terms—Error analysis, hierarchical backprojection,
tomographic reconstruction.

I. INTRODUCTION

T OMOGRAPHIC reconstruction of an image from a set
of parallel beam line-integral projections, is a technique

which has found a number of applications, ranging from nonde-
structive evaluation (NDE), and medical imaging, to synthetic
aperture radar (SAR) and radioastronomy (see, e.g., [1]). When
a sufficiently complete set of data is available, the reconstruc-
tion technique of choice is filtered backprojection (FBP). Un-
fortunately, the backprojection step in the FBP is relatively ex-
pensive, requiring operations for reconstruction of an

image from projections in opera-
tions.

Recently, we introduced a new fast hierarchical backprojec-
tion (FHBP) algorithm for reconstruction of an object
from projections [2]. The idea behind the algorithm was
the following. Under special conditions (specifically, a flexible
radial sampling scheme), we demonstrated that it was possible
to exactly decompose the backprojection ofprojections onto
an object into the sum of four backprojections ofpro-
jections onto objects, each of which represented a
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quadrant of the original backprojection, centered at the origin.
Using the well known essentially bandlimited properties of the
Radon transform, we then replaced these backprojections by
backprojections of projections onto objects. In
doing so, we introduced radial filtering and angular decimation
steps into the processing. The decomposition was applied recur-
sively, further subdividing the objects into quad-
rants, until the single pixel level was reached. The results could
then be aggregated into a complete reconstruction. Furthermore,
by using a combination of the exact and approximate decompo-
sitions, we were able to control the cost vs. accuracy tradeoff.

The algorithm proposed in [2], as well as its simplified ver-
sion analyzed in this paper, work by aggregating images of suc-
cessively larger size, until the full sized backprojection image is
formed. At each stage in the algorithm, each of the subimages
is at the full resolution of the final image. Other fast backpro-
jection algorithms such as the Multilevel Inversion [3], the link-
based methods [4], quadtree backprojection algorithms [5], [6],
and factorized backprojection [7], [8] form, at different stages
of the algorithm, full-size images of successively higher reso-
lution, until the final resolution of the backprojection image is
reached.

Our simulations in [2] suggested that the new algorithm was
both fast and accurate. In the formulation of the algorithm, it was
necessary to specify parameters that controlled the algorithm
performance. These parameters included a radial interpolation
kernel, angular anti-aliasing filter, and a parameterthat traded
off accuracy for performance. For our initial studies in [2], we
made the simplest possible choices for these parameters, and
still obtained good results in terms of reconstruction quality.

In this paper, our goal is to analyze the FHBP algorithm to
study the choice of the algorithm parameters and their effect on
performance. For the sake of analytical tractability, however, we
first replace the FHBP algorithm with a simpler variant. This al-
gorithm retains most of the functionality of the original FHBP
algorithm, but uses a simpler radial sampling formulation, and
only one (approximate) decomposition. The cost versus accu-
racy tradeoff is handled differently also. The simplified FHBP
algorithm decomposes the backprojections until they are a uni-
form pixels in size, and these backprojections are computed
exactly. Thus, by increasing, one obtains better quality re-
constructions, at the cost of higher computational effort. The
resulting algorithm generally does not perform as well as the
original FHBP algorithm, but the analysis of this simpler algo-
rithm is still instructive in terms of parameter selection for the
original FHBP.

We perform a stochastic error analysis of the modified FHBP
algorithm, in order to study the effect of the parameter choices
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on the algorithm performance. As a result, we are able to bound
the per-pixel error variance in terms of the image bandwidth
and choice of interpolators. This is a point-wise variance over
an ensemble of input sinograms, as opposed to a simple RMS
error bound. In particular a bound on the error variance for the
per-pixel error provides us with confidence intervals (for any
specified level) on the per-pixel error. The paper is organized as
follows. In Section II, we present the new, simplified FHBP al-
gorithm which we propose to analyze. In Section III, we derive
bounds on the pixel error variance as a function of the various
parameters of interest. In Section IV, we discuss the computa-
tional complexity tradeoffs associated with the various parame-
ters. Section V presents simulations comparing actual algorithm
performance to the prediction of the bounds. Conclusions and
suggestions for future research are presented in Section VI.

II. SIMPLIFIED FAST HIERARCHICAL BACKPROJECTION

ALGORITHM

The original FHBP that we derived in [2] performed well in
our phantom studies. However, the resulting algorithm is diffi-
cult to study analytically because of the nature of the processing
steps involved. In this section, we derive a new, simplified FHBP
algorithm [which we call the simplified fast hierarchical back-
projection (SFHBP) algorithm], which is similar to the FHBP
algorithm in terms of parameter choices and characteristics, but
uses slightly different approximations and is simpler to analyze.
The algorithm is also similar to the dual of the multilevel domain
decomposition (MDD) algorithm of Boaget al. [9], which is a
fast algorithm for reprojection that is based on a hierarchical do-
main-decomposition of the Radon transform.

We will use an operator and Hilbert space formulation to
make the manipulations of the various steps clear. The space

is the standard Hilbert space of square-integrable func-
tions defined on . This space represents the set of all possible
spatially continuous objects. The space is the space of
2-D, square summable sequences. A typical element in
is the result of spatially discretizing (sampling) an element of

. The space is the -wise Cartesian product of
, with an element in indexed by

and . A typical element in is the
set of radially continuous projections of an object in .
The final space of interest is , which is the -wise Carte-
sian product of , with an element in in-
dexed by and . A typical element
in is a set of radially sampled projections of an object.

A. Discrete Backprojection Operator

Our goal is an implementation of thediscrete angle backpro-
jectionoperator: : , defined1 by (see, e.g.,
[1] and [10])

(1)

1Our definition of backprojection does not include a2�=P weighting for
two reasons. First, this weighting is only correct for an equally spaced angle
distribution. Second, we want our backprojection to be the exact adjoint of the
Radon transform (see [2] for more details).

where . For convenience, we will assume that

(2)

for , although in principle, the formulation
of the FHBP (and the analysis) could be easily extended to other
sets of view angles. Note that we are not exploiting the sym-
metry of the Radon transform by sampling on , although
our analysis could also be extended to that case.

Of course, implementation of (1) in practice is impossible, be-
cause it maps radially continuous projections to a continuous re-
construction. Therefore, for implementation purposes, it is nec-
essary to start and end with discrete (and finite length) data.
Given a set of sampled projections , an implemen-
tation of (1) involves the following steps: 1) radial interpolation
from to , 2) backprojection [via (1)] from
to , 3) spatial sampling from to , 4) trun-
cation to the region of interest (ROI) from to .
The operator that combines all four of these steps is the dis-
cretized backprojection operator: . To de-
fine it, we will first describe the operators to implement each of
Steps 1)–4).

Step 1 is the radial interpolation step, which is performed by
the radial interpolation operator:

(3)

where is the radial interpolation kernel, and is the radial
sampling period. Note that our definition of is simpler than
the radial interpolation operator in [2], and this leads to some
simplifications in the formulation of the fast algorithm. Step 2,
of course, is computed via (1).

Step 3 is the spatial sampling step, which is performed by the
spatial sampling operator:

(4)

The function is the generalized sampling kernel,
and corresponds to convolution of with , followed by
sampling on the integer lattice. Thus,serves as a kind of an-
tialiasing filter prior to sampling. Step 4 is simply a truncation
operator : , defined by

else.
(5)

Thus, the discrete backprojection : is
defined by

(6)

Alternately, we can write the discrete backprojection explicitly
as

else,

(7)
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where

(8)
Now, it is simple to prove that for all

that satisfy the following relationship

(9)

where is the radius of support of and is the radius of
support of . If we restrict , , then

for all such that

(10)

Equations (9) and (10) indicate that the discrete backprojection
is a local operation, in the following sense:

(11)

where : is defined by

else.
(12)

Although our presentation of the SFHBP algorithm is highly
abbreviated, we will need one additional property of
throughout our analysis of the algorithm. Let us make the
following assumptions:

A1) radial interpolation is an ideal bandlimited interpo-
lator with bandlimit ;

A2) , , and satisfy the Nyquist criterion:
, and , satisfy the Nyquist crite-

rion: .
Assumption A2) is directly related to thebow tie property

of the sinogram [11], in that the two-dimensional (2-D) Fourier
transform of the sinogram data is supported on a bow tie shaped
region, shown in Fig. 1, from which the Nyquist criteria are
determined.

Next, let us define a sinogram domain filter :
, that is a lowpass filter with radial bandwidth , and an

angular bandwidth of (see Fig. 1). Then the bow-tie
spectral support of the sinogram along with Assumptions A1)
and A2), imply that [2], [12] for any

(13)

B. Simplified Fast Hierarchical Decomposition of the
Backprojection

We now present the hierarchical decomposition of the back-
projection operator that leads to the simplified fast hierarchical
backprojection (SFHBP) algorithm. Proofs and details relevant
to the construction of this decomposition can be found in [12].
The manipulations and arguments used in the derivation of this
decomposition are also similar to the treatment in [2].

Fig. 1. Spectral support of a radially and angularly sampled sinogram withP

projections from an object supported on a square of sizeN � N (centered at
the origin), with a radial bandwidth ofB, and a radial sampling interval ofT .
The operatorC is a lowpass filter that passes only the regions shown.

To construct the decomposition, we will need to define sev-
eral additional operators. The first,: is a
simple spatial shifter, parameterized by an offset

(14)

The second operator : is an angular
decimation operator, which angularly convolves the sinogram
with a lowpass filter , and then downsamples by a factor of
two. Thus

(15)

The next operator : is simply a
radial shifter, which when applied to a discrete set of projections

shifts the th projection by
, where

(16)

for , and

(17)

for . Because the shift need not be an integer, is
expressed in terms of three steps:

1) interpolation to a radially continuous sinogram;
2) delay of each continuous projection by;
3) resampling of the delayed projections.

In the signal processing literature, for a fixed, is known as a
fractional delay (FD) [13]. The operator can be expanded as

(18)
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Finally, we also define the operator :

to be

(19)

Now, we introduce an additional assumption

A3) The angular filter is an ideal lowpass filter with
cutoff and gain 2.

Then, subject to Assumptions A1)–A3), the following de-
composition holds [12]

(20)

Equation (20) decomposes the backprojection ofprojections
onto an image into four backprojections , each
of projections onto an image, with some addi-
tional preprocessing denoted by and shifts . While
we omit here the derivation of (20), it is important to note that it
relies heavily on the bow tie support of the spectrum, or equiv-
alently, on (13).

Equation (20), and our derivation of it in [12] differs from
the decompositions presented in [2] in two ways. In [2], we
constructed two decompositions of the backprojection operator,
one exact and one approximate. These were used in combina-
tion to decompose the backprojection operator. In contrast, in
this paper, we have constructed only one approximate decom-
position—that of (20). Furthermore, (20) differs from the ap-
proximate decomposition of [2] because the processing prior to
the backprojection, namely , is separable, i.e., the radial
and angular processing can be done separately. This separability
of the sinogram preprocessing step is the key to the analytical
tractability of the SFHBP.

To use (20) in a hierarchical algorithm, we apply it recursively,
decomposing each into a sum of four backprojections

. This process can continue down to the single pixel
level, in which case the original is decomposed into a sum
of backprojections of the type , i.e., backprojection
of projections onto a single pixel. However, for the SFHBP
algorithm, we allow for a parameterthat controls the number
of times the recursion is used, after which the remaining back-
projections are computed from definition (6) instead of using
(20). For example, if , then we decompose in accordance
with (20). If , on the other hand, then we compute

(21)
Thus, for , we effectively decompose

into a sum of backprojections, each of projec-
tions onto an image of size centered at the origin.

Furthermore, in [12], we show that the cost of applying (20)
recursively times is

(22)

TABLE I
PARAMETERS THAT CONTROL THE SFHBP ALGORITHM

floating point operations, where , and are the ra-
dius of support for , , and , respectively. If we choose

, we recover an algorithm for re-
construction of an image from projections. If

, then the total cost is . The parame-
ters that need to be determined for this algorithm are summa-
rized in Table I.

If we choose and to satisfy Assumptions A1) and A3),
respectively, then and . But for computa-
tional complexity reasons, we chooseand to be finite length
(short) filters. These shorter filters can be used if the projections
are angularly and radially oversampled, a point we will return
to later. For these nonideal filters, Assumptions A1), and A3)
become approximations, and in particular, (20) becomes an ap-
proximation instead of an equality.

III. ERRORANALYSIS

A. Sources of Error

Recall that to obtain a fast algorithm, we had to relax As-
sumptions A1) and A3), and use shorter filtersand . These
choices will affect the quality of the approximation in each of
the decomposition steps for which (20) is now only an approx-
imation. The errors will accumulate over the multiple stages in
the hierarchy resulting in errors in the final backprojection. Fur-
thermore, the size of the error will depend not only onand ,
but also on the other parameters in the problem (see Table I).
Thus, we now turn to the problem of determining how the choice
of the various parameters affects the algorithm’s performance.
To do so, we will employ a stochastic error analysis to derive
approximate bounds on the backprojection error that depend on
each of the various parameters.

Other than the relaxation of Assumptions A1) and A3), there
is another potential source of error in (20). It is due to the fact
that the bow-tie support result is itself an approximation (albeit a
very good one, see [10], [11]). However, we expect the backpro-
jection error to be dominated by the error due to the relaxation
of Assumptions A1) and A3), and do not analyze the effects of
deviations from the bowtie support. Furthermore, the bow-tie
support approximation improves with the amount of radial and
angular oversampling used.

B. Hierarchical Error Accumulation

We now turn to the problem of determining how the errors in
the hierarchical decomposition propagate through the various
stages. We will study a slightly different representation for (20)
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Fig. 2. SFHBP for a4 � 4 image.

Fig. 3. Path from the input projections to any pixel in anN �N backprojection computed via the SFHBP.

which allows us to emphasize the frequency-domain character-
ization of the errors. First, we expand (20) via (19), to obtain

(23)

Next, we apply (11) to reabsorb the radial truncation into the
backprojection, yielding

(24)

Then, we apply (13) to reinsert the filtering prior to backprojec-
tion, yielding

(25)

Now, we define a new operator:
as

(26)

Then, (25) becomes

(27)

Equation (27) is the starting point for our study of error accu-
mulation.

To construct the error bounds, let us first consider the simple
case of backprojecting projections onto a image. This de-
composition, corresponding to (21) for , is shown graph-
ically in Fig. 2. For convenience, we combine all the concate-
nated shifts which shift the output into the correct lo-
cation, into a single operator . We immediately note that the
path from the input to each of the pixels in the reconstruc-
tion is the same (to within the shifts used along each

path). Thus, returning to the general case of an image,
we will consider the system shown in Fig. 3, which maps the
input to a single pixel via

(28)

where we have dropped the second subscript offor nota-
tional convenience (the second subscript indicated which quad-
rant of the backprojected image was being processed, so that
these second subscripts only identify which pixel is being re-
constructed). Note that we define the ordered product

(29)

Now, let us assume that is computed using approxi-
mations for the first stages, i.e., for . Then
the resulting approximate pixel is given by

(30)

Thus, the per-pixel error is given by

(31)

where : defined by

(32)

To bound the variance of the per-pixel error

(33)
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we need a model for the distribution of the filtered projection
data .

First, assume that , where is the number of sam-
ples in the radial direction. From (11) and (12), it follows that

Next, we define : as a 2-D circular convolu-
tion with a unit pulse response whose 2-D discrete Fourier trans-
form (DFT) is 1 on the bow tie and zero elsewhere (see Fig. 4).
It follows that is a projection operator. Then, we make the
following assumption about

A4) The filtered projection data satisfies ,
where is a white random process with variance.

Assumption A4) is equivalent to assuming that the sampled
projection data,afterramp filtering, has a flat spectrum over the
bowtie. The validity of this assumption is tested in our simu-
lations in Section V, where we apply our bounds to images (as
opposed to noise fields). From Assumption A4, we have

(34)

Because is white, it follows that

(35)

where the norm on the right hand side of (35) is the standard
spectral operator norm

(36)

The spectral norm is of particular interest, because it satisfies
the following property

(37)

Furthermore, for any projection operator, such as, it follows
that [14], so that (35) becomes

(38)

We now substitute the definition (32) into (38), and apply (37)
to obtain the following upper bound on the backprojection error
variance

(39)

Let us introduce the following definitions:

(40)

(41)

(42)

Next, define

(43)

for . Then

(44)

Equation (44) can be bounded by

(45)

Recognizing that , it follows from (45) that

(46)

Thus

(47)

Combining (47) and (42) with (39) yields

(48)

Equation (48) encapsulates the error accumulation in the hier-
archical algorithm. To form a computable bound, we need ex-
pressions for the worst-case per stage error , as well as the
worst-case gain .

C. Per-Stage Error

We now turn to the problem of computing the per-stage error,
which is a prerequisite for using (48). To calculate (and
thus ), we expand as

(49)

where and are the computationally efficient approxima-
tions to and , respectively. Suppressing the display of the
subscripts for notational convenience, we have

Next, we note that becauseinvolves only angular processing,
it does not change the radial bandwidth. Thus, ,
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where is a radial bandlimiter, with radial bandwidth .
Hence

(50)

where in the last step, we have used . We will write
(50) as

(51)

where

(52)

(53)

(54)

The constants , and fully characterize the error in-

troduced in each stage of the SFHBP. The constantcan be
interpreted as the gain of the angular decimator, whileis
the relative error of the angular decimator. The constantis
the relative error of the radial shifter. We now turn to bounding
each of these constants so as to better understand the effect of
parameter choice on the algorithm performance.

1) Fractional Delay Relative Error:To bound , we first
recall that the operator is a fractional delay operator, where
each projection undergoes a shiftwhich depends uponand
. We can determine the worst-case performance by looking at

a one dimensional FD problem, and taking the worst case shift.
Thus

(55)

where is simply the worst-case one dimensional error for a
fractional delay. To compute , we first note that from (18) it
follows that our approximate FD applied to a signal has
the form of a standard FIR filtering operation

(56)

where is an approximation to the ideal FD filter,
and depends on a shift . From (53), we would
like to upper bound . But , and
are all shift invariant (convolutional) operators, that act on each
projection by filtering. Thus, they commute, and

(57)

Equivalently, we need to find a bound on the approximation
error for signals that are radially

bandlimited, with radial bandwidth . The ideal is thus
given by

(58)

where is the unit pulse response of a filter with transfer
function for , and is the
radial bandwidth of .

The error in using instead of is then simply

(59)

Taking the discrete time Fourier transform (DTFT) of both
sides, yields

(60)

Squaring and integrating over yields

(61)

Hence, by Parseval’s Theorem

(62)

Thus, we obtain the following upper bound for

(63)

where is the DTFT of the FIR approximation to a FD with
delay . Furthermore, from (63), it follows that is simply the
worst-case peak ripple in the passband error ofwith respect
to .

Remarks: 1) Although in principle the FD filters are all
derived from via (18), we will permit the additional freedom
of designing the filters independent of the choice of. We do
this because depends on the minimax error, which can be
optimized for the discrete filters. 2) Different filter orders can
be used for different, to minimize the right hand side of (63).

2) Angular Decimation Gain and Relative Error:Next, we
turn to the angular processing in the form ofand . Substi-
tuting an approximate filter into (15), we have

(64)

Recall that is periodic with respect to its second argument,
with period . We will not assume that is periodic, although it
is a standard DSP result that convolution of a periodic sequence
with an aperiodic filter can be mapped to the convolution of two
periodic sequences with the same period [15].
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Thus, consists of the following steps: 1) convolution of
with for each , downsampling of the result by a factor

of two in the second argument. The approximation error ofto
clearly does not depend on the first index. So we consider

instead a one-dimensional (1-D) problem in which a periodic
signal with period is convolved with a nonideal low-pass
filter prior to downsampling. Furthermore, from (52), (54), and
Fig. 1, it follows that the output is postprocessed with, which
bandlimits the result.

Let denote the DTFT of . Let denote the decimated
convolution of with , i.e.,

(65)

Clearly, is periodic with period . Let denote the
-point DFT of one period of , and let denote the

-point DFT of one period of . Then (65) can be rewritten in
the Fourier domain (after accounting for) as

else.
(66)

Now, taking the squared magnitude of both sides of (66) and
applying the Cauchy–Schwartz inequality to the right hand side
yields

(67)

for .
Replacing the term in square brackets by its maximum, sum-

ming over , and applying Parseval’s Theorem yields

(68)

From this expression, it follows that

(69)

Using similar manipulations, we also arrive at the following
upper bound for :

(70)

We can further simplify (69) and (70) by replacing the-de-
pendent expressions with the following bounds:

(71)

(72)

An intuitive interpretation for and can be found in (71)
and (72), respectively. Specifically, is roughly the peak
in-band magnitude plus the peak out of band ripple of the
filter. Similarly, is roughly the sum of the peak in-band
ripple plus the peak out of band ripple for the filter.
Thus, if , then , and . Note that (71)
and (72) depend on the amount of angular oversampling. In
particular, because of Assumption A2), it follows that

which in turn affects the set of frequencies over which (71) and
(72) are computed.

3) Level-Independent and Simplified Bounds:At this point,
we have obtained computable expressions for the constants,

and in terms of the Fourier transforms of the various

filters involved. We have also derived bounds, and
on these constants that do not depend on the level. Thus, (51)
becomes

(73)

which together with (41) implies that we can take
. Next, we make the following simplifica-

tion. Recall that is equivalent to the peak in-band magnitude
plus a small ripple term. To first order, .
Thus

(74)

Furthermore

(75)
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It is simple to show is the peak magnitude in the passband
of the fractional delay filters. Thus, a good approximation is

, so that , and

(76)

Combining (74), (76) and (48), and noting that ,
yields the following bound:

(77)

Equation (77) can be further simplified by writing
explicitly. From (7), it follows that

(78)

Consider a circularly symmetric image sampling kernel[see
(4) or (8)] with a 2-D Fourier transform , where is the
radial frequency. Then it can be shown by means of Parseval’s
Theorem and the Fourier Slice Theorem (see [10]), that subject
to Assumption A1)

(79)

For the special case thatis the indicator function for a disk of
radius 1/2 (which is the choice we use in our implementation in
Section V), the right hand side of (79) can be expressed in terms
of hypergeometric functions [16]. For simplicity, we prefer to
bound (79) by

(80)

Substituting (80) into (77) yields

(81)

Equation (81) is simple in form, and bounds the error variance
for the th pixel. But the right hand side does not depend
on . Thus, we can replace (81) by the following uniform
bound

(82)

Equation (82) serves as the basis for our analysis of the param-
eter choices on the backprojection performance. In addition to
serving as a useful design tool, (82) also provides us with con-
fidence intervals for errors in the reconstruction. Indeed, from
(32), it follows that each error term is a weighted sum
of random variables. Furthermore, this weighted sum involves
at least terms with roughly equal weights. Hence, we can ap-
peal to the Central Limit Theorem (CLT) to argue that the errors

should have an asymptotic Gaussian distribution [17].

For large , we can then construct confidence intervals based
on (82). For example, we can expect that over 99% of the errors
in the th pixel (over an ensemble of sinograms) will lie
in the interval , where .
We will also return to (82) as a possible means of selecting an
operating point for the algorithm.

Note that bound (82) increases with. This would appear to
suggest that the error increases as the number of views is in-
creased. But our definition of the backprojection operation [see,
e.g., (1)] is unweighted by , so that the signal level in the
backprojection also increases with. When the error is normal-
ized by standard deviation of the signal (to form a signal to noise
ratio), the dependence on cancels out.

IV. DISCUSSION OFBOUNDS

Prior to an experimental study of the bounds we have derived,
it is interesting to note that we can already draw some conclu-
sions from the forms of the bounds. In this section, we will state
those conclusions, which will then be tested via simulations in
the next section.

A. Choice of

The first point of interest is the choice of the parameter.
Note that (82) dependslinearly on , so that doubling (or
equivalently halving the size of the smallest backprojection that
is decomposed) doubles the approximation error. On the other
hand, the cost expression (22) indicates that the cost decreases
roughly exponentially fast with increased. Hence, the bounds
suggest that should be chosen as large as possible (i.e.,

), with the errors controlled via the radial and angular
oversampling and filter lengths.

B. Radial and Angular Oversampling and Filter Lengths

Another conclusion that can be drawn from (81) is that the
error bound depends on and in an additive fashion. This
means that the approximationsand to the ideal radial and
angular filters should be chosen so that they contribute roughly
equal errors to the output. Put another way, the bound depends
on . Thus, if is made very small (by taking long
FD filters) relative to , then the overall accuracy of the algo-
rithm becomes dominated by .

Next, we turn to the question of radial and angular oversam-
pling. Let us assume that the input data is sampled radially and
angularly at the relevant Nyquist rates. From (63), it follows that
the radial component of the error is the ripple in the FIR approx-
imation to an allpass filter with a phase response of , and
the angular component of the error is determined by the pass-
band and stopband ripple in a short approximation to an ideal
angular low pass filter with cutoff and no transition band.
It is well known that both of these errors will be large, because
the desired frequency response is discontinuous [15]. Thus, it
follows that some radial and angular oversampling are required
for the errors to be made small.

We can draw some further conclusions for the angular fil-
tering case by employing the well known empirical relationship
between filter order and approximation error for minimax-op-
timal lowpass filters (see [15, p. 480]). It has been demonstrated
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that for filters with a ripple of in the passband and stopband,
the filter order necessary to achieve that ripple is

(83)

where is the width of the transition band. If the original
projection data were angularly sampled at the Nyquist rate

, then upsampling angularly by a factor of
means that the width of the transition band

is given by

Thus, noting that depends directly on, the relationship be-
tween the approximation error , the filter order , and the
oversampling factor of , is given by

(84)

From (84), it follows that the approximation error decays fairly
slowly with increasing oversampling but fast with respect to
filter order . Similar conclusions can be drawn starting from
Lagrange and the so-called central sampling formulae (see [18]
and [19], respectively).

For the radial processing, results on FDs can be found in [20],
[21], which suggest a similar relationship between filter order,
and approximation error and bandwidth as in the angular case.
In particular, for a passband ripple of, and a “transition band”
of , the filter order satisfies (83). For a signal upsampled
radially by a factor of , we have that

Thus, we conclude that

(85)

Again, the error bounds decrease exponentially fast in the filter
order but rather slowly in the amount of oversampling. Equa-
tions (84) and (85) can be substituted into (82) to yield the fol-
lowing expression:

(86)

where we have also substituted , . Fur-
thermore, can also be modified to account for the additional
cost of applying the SFHBP algorithm to upsampled projections
(as well as using potentially longer filters in the radial and an-
gular filtering steps). The resulting expression is

(87)

TABLE II
PARAMETER CHOICESCOMMON TO THE VARIOUS SIMULATIONS

C. Design Considerations

The bounds suggest the following scheme for parameter se-
lection:

1) choose as large as possible (i.e., decompose to the
single pixel level);

2) choose and so that and contribute equally
to the total error;

3) keep oversampling (though necessary both angularly and
radially) to a minimum.

In principle, with (86) and (87), the problem of parameter se-
lection could be reduced to an optimization problem, in which
the cost is fixed, and the error is minimized, or the error is
fixed and the cost is minimized. The resulting problem is a
constrained integer programming problem that can be solved by
exhaustive or other techniques [22]. This automated approach
to parameter selection, while promising, is beyond the scope of
this paper. We will instead focus on simple “rule of thumb” re-
sults that can be found through numerical simulations.

V. SIMULATIONS

In this section, we present some numerical simulations which
demonstrate the usefulness of the bounds in characterizing per-
formance of the SFHBP algorithm. Our goal is to demonstrate
that the bounds correctly predict the various trends of algorithm
performance as a function of parameter choice so that they can
be used for design purposes. In particular, we will verify and re-
fine the conclusions as to parameter selection that we discussed
in the previous section. These experiments also serve to verify
that the various approximations made in the derivation of the
bounds are valid. In the course of the various simulations, some
of our parameter choices were common throughout. These pa-
rameters, and the related constants are summarized in Table II.

A. Error and Bound Evaluation

To evaluate the error, in principle, we need to compute
backprojections of an ensemble of images using the direct and
SFHBP algorithms, and then study the error variance at each
pixel and compare it to the upper bound. In practice, however,
we instead approximate the error field as an ergodic
random process and compare the rms error

(88)

to the upper bound (86). Thus we compare the spatially averaged
error variance to the bound instead of computing an average over
an ensemble of images. Furthermore, we scale both the estimate
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Fig. 4. For the circulant–block–circulant bow tie projection operator, the rank
of the matrixP is determined by the number of samples that fall in the bow
tie region (shaded).

and the bound by the rms backprojected value, so that errors can
be expressed in percentages.

To compute (86), we also need to estimatefrom . Let
denote the average signal power in the sinogram

(89)

where is the number of points in the support of. From the
law of large numbers and Fig. 4, it can be shown [12] that

(90)

or equivalently

(91)

We can thus relate to the measured norm of the projec-
tion data. The last step is to incorporate this estimate into the
bound. Combining (88) with (91) and (82) yields the following
bound:

(92)

B. Filter Order and Oversampling

Our first goal was to determine an empirical rule relating
the radial and angular filter orders. To that end, we performed
a series of experiments in which we fixed the bandwidth,
angular and radial oversampling ( and respectively),
and designed the relevant minimax-optimal angular and radial
filters. The angular filter was designed using the standard
Parks–McClellan algorithm [15]. The radial filter was a FD
filter with delay 1/2 designed using the extended Parks–Mc-
Clellan algorithm developed in [23]. More details on the
problem of minimax-optimal design of FD filters can be found

Fig. 5. Contributions of the radial and angular processing to the error bound
as a function of filter order.

in [20], [21]. We then calculated and for filters of
different length and tabulated them. The results of a typical
such experiment are shown in Fig. 5, which indicates the results
for .

From Fig. 5, two features are immediately noticeable. The
first feature is that decreases in “steps,” so that angular filters
of order and yield the same error. This behavior is
a result of the fact that is a “half band” filter [24], and
that (except for ) has zero taps for all even values of.
Furthermore, convolution with these half band filters requires
half the computational effort that we assumed in the derivation
of .

The second feature of Fig. 5 is that the decay rates for the
radial and angular errors satisfy , so that for
a given error, the angular filter needs to be twice as long as
the radial filter to contribute an equal amount of error to the
bound. The most likely explanation for this phenomenon is that
the transition bands for the radial filter are of the form

, while the transition bands for the angular filter are of
the form . The transition bands for the radial
filter, when considered on , form a larger transition band
of twice the width, while the same is not true for the angular
filter (the two transition bands are separated by a stop band).
We conjecture that this is the reason for the difference in decay
rates. Furthermore, this difference motivates us to choose

(93)

C. Effective Signal-to-Noise Ratios and Optimal Tradeoffs

At this point, we can make some predictions about the
tradeoff between oversampling and filter orders. An under-
standing of those tradeoffs is facilitated by rephrasing the
bounds in terms of an effective signal-to-noise ratio (SNR).
Consider the approximate algorithm with the exact sino-
gram data , and the direct algorithm with noisy data

, where is a white noise
process with variance . The noise will contribute
an error variance of to . Recall that

is the variance of , i.e., the
per-pixel error variance due to the approximations.
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The effective SNR is defined as the SNR in the measurements
such that for some . At this ef-

fective SNR, errors introduced by the fast algorithm have vari-
ance equal to the error variance due to measurement noise. For
example, if the true measurement SNR is 3 dBbelowthe effec-
tive SNR, then the errors due to the FHBP contribute no more
than an additional 50% in error variance to the backprojected
variance.

To compute the effective SNR, we first calculate. It can be
shown that

(94)

From (80), it follows that for the circular pixel choice of, (94)
is2

(95)

Now, from (82), we know that the fast backprojection con-
tributes a variance of

(96)

If we use the relationship between and from (90), we can
rewrite (96) as

(97)

Suppose we look at the case . Then from (97) and
(95), we find that

(98)

We can also divide by to obtain an expression for the
effective SNR

(99)

When we choose the algorithm parameters, we will trade this
effective SNR for algorithm speed. To measure the speed, we
calculated the speedup using (87) and the parameters in Table II.
The resulting speedup for the case is

(100)

We can now plot the effective SNR against the speedup, and
obtain an intuitively meaningful assessment of the bounds.
Fig. 6 shows plots of the effective SNR (in decibels) versus
the speedup for , and

. Smaller lead to larger speedups for
a fixed amount of oversampling. Calculations were performed
assuming .

From Fig. 6, we can immediately determine optimal operating
points for the fast algorithm, given an estimate of the measure-
mentnoise.Forexample, if the projections are corruptedbynoise
to an SNR of 40 dB, then we can operate the algorithm so that the
effective SNR of the fast algorithm is 43 dB. This choice guaran-
tees that the errors in the backprojection contribute half as much
power to the errors in the final image as the errors in the mea-
surements themselves. Furthermore, from Fig. 6, we can deter-

2Equation (80) remains valid whenP=N is replaced byP

Fig. 6. Normalized speedup versus error dependance for the bounds as a
function of filter orderM (increasing speedup for smallerM ) and over-
sampling factorK.

Fig. 7. Phantom used for theN = 512 pixel experiments. For theN = 256

pixel experiments, the subimage indicated by the white rectangle was used.

mine that the optimal (in terms of maximizing speedup) choice is
, , with a resulting speedup of almost 50.

D. Bound Verification

Our second goal in this section is to verify the usefulness of
the bounds in predicting the behavior of the SFHBP algorithm
with respect to parameter choices. We were unable to obtain data
from a CT scanner for testing the bounds, so we elected to gen-
erate synthetic projections from a CT reconstruction in the vi-
sual human dataset (VHD) [25]. Specifically, we used slice 1194
from the Visual Female dataset, which is shown in Fig. 7 win-
dowed to [0, 100] Hounsfield units for display purposes only.
Note that the slice is fairly challenging to reconstruct accurately
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Fig. 8. SFHBP performance versus the bound for various choices ofJ .

due to the high contrast from the high density bone regions and
the structure in the surrounding soft tissue. The original scan
was pixels in size. For our experiments, we used the

subimage of the phantom indicated by the rectangular
region in Fig. 7.

The first experiment was to verify the behavior of the cost and
error bounds with respect. To that end, we took the
phantom subimage, and computed projections using
a discrete approximation to the Radon transform with ,
found by taking the adjoint of (1). The projections were then
ramp filtered with the Ram–Lak filter [26] with a cutoff at

. This cutoff is equivalent to and .
We then computed an exact backprojection via (1), and a se-
ries of fast backprojections using the SFHBP algorithm with
different choices for the parameter. The radial filters were
fourth-order minimax-optimal fractional delays, that were com-
puted using the techniques described in [21]. The angular filter
was a sixth-order lowpass filter designed using the com-
mand in MATLAB [27]. The error bound and the actual algo-
rithm errors are compared in Fig. 8. The agreement between the
bound and the algorithm performance is good, suggesting that
the derived expressions for the error bounds and cost accurately
model the effects of choosing.

The second experiment was to verify the behavior of the error
bounds as a function of the oversampling factor .
The same phantom was used as in the previous experiment, with
thesamenumberofprojections. Inorder tosimulate theoversam-
pling process without implementing noninteger oversampling,
we simply bandlimited the projections to in the
Ram–Lak filter. This serves to simulate the effect of radial and
angular oversampling on the error behavior of the SFHBP algo-
rithm.3 The filters were designed optimally for each choice of

. For each , both an
exact backprojection, and a fast backprojection (with )
were computed. The error and bound were computed via (92).
The results are shown in Fig. 9. Two different choices for radial

3Although this simulated oversampling does not allow us verify the effects of
oversampling on�, these are straightforward.

Fig. 9. SFHBP performance versus the bound for various choices of the
fractional radial bandwidth.

Fig. 10. SFHBP performance versus the bound for various choices of the filter
orderM .

filter length are shown. For the shorter filter , the bounds
are accurate for the range of. For the longer filter, the
bounds fail for errors smaller than 0.1%. This suggests that the
failure of the bounds is due to errors in the “exact” backprojec-
tion. In particular, our exact backprojection uses a radial filter
(see Table II) that is not ideal. Thus, errors are present in the exact
backprojection which dominate the errors of the fast algorithm
for long filter lengths or large amounts of oversampling.

The third experiment was designed to verify the predicted
cost and error behaviors as a function of the filter order

. The phantom and were the same as in
the previous experiment. The cutoff of the ramp filter was set
to , simulating a radial oversampling factor of
and an angular oversampling factor of in the
SFHBP. The filter order was then varied over the range

, and the normalized error calculated.
The result is shown, with a comparison to (92), in Fig. 10. The
agreement between the bound and the measured performance
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Fig. 11. SFHBP performance versus the bound for various choices of the filter
orderM , using the Shepp–Logan head phantom image.

Fig. 12. Histogram of the pixel errors forM = 12withP = 1024projections
from the VHD phantom. Indicated is the 99% confidence interval as predicted
by the bounds and the ergodicity assumption. Over 97% of the errors fall within
the predicted interval.

is good, suggesting that the bounds are an accurate predictor of
the backprojection error as a function of filter length as well. To
verify that the bounds were accurate for other images, we also
reran this experiment using a Shepp–Logan head
phantom image instead of the VHD image [28]. The results of
this experiment, shown in Fig. 11, demonstrate that the bounds
are accurate for this image as well.

As a final experiment, we examined the actual distribution of
the pixel errors. In Fig. 12, a histogram is shown of the errors for
the backprojection from the previous experiment with the VHD
data and . Also indicated is the confidence interval cor-
responding to three standard deviations computed according to
the bounds. Thus, from the CLT argument given previously and
the ergodic assumption, we expect 99% of the pixel errors to
fall within this interval. For this sample image, over 97% of the
errors do fall within the interval, suggesting that the Gaussian

approximation and ergodic assumptions are justified for mod-
eling the per-pixel error distribution.

VI. CONCLUSIONS

We have presented an error analysis for a simplified version
of our FHBP algorithm. The analysis lead to useful informa-
tion on the behavior of the reconstruction error as a function of
interpolator length, oversampling, and the parameter, which
determined the number of times the backprojection was decom-
posed. Simulations on a slice from the Visual Human Dataset
support the bounds, and verify the proposed schemes for param-
eter selection. Future work might build upon these error bounds
by allowing for different interpolator lengths at different stages,
or focus on error bounds that do not use bandlimited models.
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