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Error Analysis and Performance Optimization of Fast
Hierarchical Backprojection Algorithms

Samit BasuMember, IEEEand Yoram BreslerfFellow, IEEE

Abstract—We recently proposed a novel fast backprojection al-
gorithm for reconstruction of an IN x IN pixel object from O(IN)
projections in O(IN? log, IN) operations. In this paper, we ana-
lyze a simplified version of that algorithm, to determine the ef-
fects of various parameter choices on the algorithm’s theoretical
performance. We derive a bound on the variance of the per-pixel
error introduced by using the hierarchical backprojection. This
bound is with respect to an ensemble of input sinograms, and al-
lows us to construct confidence intervals (for any specified level)
for the per-pixel errors. The bound has a simple form, and we
show how to use it to select algorithm parameters for different
cost versus error tradeoffs. Simulation results show that the bound
accurately predicts the performance of the algorithm over a wide
range of parameter choices. These results are verified for different
images, including a tomographic reconstruction from the visual
human dataset (VHD). The analysis therefore provides an effec-
tive tools for the selection of parameters and operating point for
the fast hierarchical backprojection algorithm.

Index Terms—Error analysis, hierarchical backprojection,
tomographic reconstruction.

. INTRODUCTION

quadrant of the original backprojection, centered at the origin.
Using the well known essentially bandlimited properties of the
Radon transform, we then replaced these backprojections by
backprojections oP/2 projections ontdV/2 x N/2 objects. In
doing so, we introduced radial filtering and angular decimation
steps into the processing. The decomposition was applied recur-
sively, further subdividing théV/2 x N/2 objects into quad-
rants, until the single pixel level was reached. The results could
then be aggregated into a complete reconstruction. Furthermore,
by using a combination of the exact and approximate decompo-
sitions, we were able to control the cost vs. accuracy tradeoff.
The algorithm proposed in [2], as well as its simplified ver-
sion analyzed in this paper, work by aggregating images of suc-
cessively larger size, until the full sized backprojection image is
formed. At each stage in the algorithm, each of the subimages
is at the full resolution of the final image. Other fast backpro-
jection algorithms such as the Multilevel Inversion [3], the link-
based methods [4], quadtree backprojection algorithms [5], [€],
and factorized backprojection [7], [8] form, at different stages
of the algorithm, full-size images of successively higher reso-

OMOGRAPHIC reconstruction of an image from a sdution, until the final resolution of the backprojection image is

of parallel beam line-integral projections, is a technigueached.

which has found a number of applications, ranging from nonde-Our simulations in [2] suggested that the new algorithm was
structive evaluation (NDE), and medical imaging, to synthetlaoth fast and accurate. In the formulation of the algorithm, it was
aperture radar (SAR) and radioastronomy (see, e.g., [1]). Whagcessary to specify parameters that controlled the algorithm
a sufficiently complete set of data is available, the reconstryserformance. These parameters included a radial interpolation
tion technigue of choice is filtered backprojection (FBP). Urkernel, angular anti-aliasing filter, and a paramé¢hat traded
fortunately, the backprojection step in the FBP is relatively exff accuracy for performance. For our initial studies in [2], we
pensive, requiring?(/N?) operations for reconstruction of anmade the simplest possible choices for these parameters, and
N x N image fromO(N) projections inO(N?log, N) opera- still obtained good results in terms of reconstruction quality.
tions. In this paper, our goal is to analyze the FHBP algorithm to

Recently, we introduced a new fast hierarchical backprojestudy the choice of the algorithm parameters and their effect on
tion (FHBP) algorithm for reconstruction of ai x N object performance. For the sake of analytical tractability, however, we
from O(IV) projections [2]. The idea behind the algorithm wafirst replace the FHBP algorithm with a simpler variant. This al-
the following. Under special conditions (specifically, a flexiblgyorithm retains most of the functionality of the original FHBP
radial sampling scheme), we demonstrated that it was possialgorithm, but uses a simpler radial sampling formulation, and
to exactly decompose the backprojectionfbprojections onto only one (approximate) decomposition. The cost versus accu-
anN x N object into the sum of four backprojections®Bfpro- racy tradeoff is handled differently also. The simplified FHBP
jections ontalN/2 x N/2 objects, each of which represented algorithm decomposes the backprojections until they are a uni-

form L pixels in size, and these backprojections are computed
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on the algorithm performance. As a result, we are able to bountiereé,, € [0, 27). For convenience, we will assume that
the per-pixel error variance in terms of the image bandwidth

and choice of interpolators. This is a point-wise variance over 6, = g 2
an ensemble of input sinograms, as opposed to a simple RMS
error bound. In particular a bound on the error variance for tifer p € {0, ..., P — 1}, although in principle, the formulation

per-pixel error provides us with confidence intervals (for angfthe FHBP (and the analysis) could be easily extended to other
specified level) on the per-pixel error. The paper is organized $&ts of view angles. Note that we are not exploiting the sym-
follows. In Section II, we present the new, simplified FHBP almetry of the Radon transform by sampling [@n «), although
gorithm which we propose to analyze. In Section Ill, we deriveur analysis could also be extended to that case.
bounds on the pixel error variance as a function of the variousOf course, implementation of (1) in practice is impossible, be-
parameters of interest. In Section IV, we discuss the compueause it maps radially continuous projections to a continuous re-
tional complexity tradeoffs associated with the various parameenstruction. Therefore, for implementation purposes, it is nec-
ters. Section V presents simulations comparing actual algoriti@ssary to start and end with discrete (and finite length) data.
performance to the prediction of the bounds. Conclusions afdven a set of sampled projectiopse ¢5'(Z), an implemen-
suggestions for future research are presented in Section VI. tation of (1) involves the following steps: 1) radial interpolation
from ££(Z) to LY (R), 2) backprojection [via (1)] fronLZ (R)
Il. SIMPLIFIED FAST HIERARCHICAL BACKPROJECTION to Ly(R?), 3) spatial sampling fronky(R?) to £5(Z?), 4) trun-
ALGORITHM cation to the region of interest (ROI) fromy(Z?) to £5(Z?).

The operator that combines all four of these steps is the dis-

The original FH_BP that we derived in [2_] performed V\_/eII _i”cretized backprojection operatl: ¢£(Z) — £»(Z2). To de-
our phantom studies. However, the resulting algorithm is difffg,q it \ve will first describe the operators to implement each of
cult to study analytically because of the nature of the processiggyng 1)4).
stepsinvolved. In this section, we derive a new, simplified FHBP Step 1 is the radial interpolation step, which is performed by
algorithm [which we call the simplified fast hierarchical backy,q 44ial interpolation operatdr. £5'(Z) — LL(R)
projection (SFHBP) algorithm], which is similar to the FHBP 2 2
algorithm in terms of parame.ter c_hoices and gharacteristics, but Zy(r,p) = Z g(k, p)p(r — kT) (3)
uses slightly different approximations and is simpler to analyze. &

The algorithm is also similar to the dual of the multilevel domain . I : . .
decomposition (MDD) algorithm of Boaet al. [9], which is a where¢ is the radial interpolation kernel, aril is the radial
po: alge . agt al. [9], . . ampling period. Note that our definition @fis simpler than
fas'F algorithm for_r_eprolectlon thatis based on a hierarchical e radial interpolation operator in [2], and this leads to some
main-decomposition of the Radon transform. simplifications in the formulation of the fast algorithm. Step 2,

We will use an operator and Hilbert space formulation tg : .
of course, is computed via (1).

make2 the manlpulatlons_of the various steps glear. The Spac%tep 3 is the spatial sampling step, which is performed by the
L>(R?) is the standard Hilbert space of square-integrable func-a,[iaI sampling operata: L,(R2) — £2(72)
- L2 2

tions defined oriR?. This space represents the set of alll possib%)
spatially continuous objects. The spaig€Z?) is the space of
2-D, square summable sequences. A typical elemefy(if?)

is the result of spatially discretizing (sampling) an element
L»(R?). The spacd.4’(R) is the P-wise Cartesian product of
L>(R), with an elementg.(r, p) in LY (R) indexed byp €
{0, 1, ..., P—1}andr € R. Atypical elementin_{'(R) is the
set of P radially continuous projections of an objectiia(R?).
The final space of interest &’(7), which is theP-wise Carte-

Sfui j) = / e, i — o, j—y)dedy. (@)

(%'fhe functionb € L,(R?) is the generalized sampling kernel,
and S corresponds to convolution gf. with 4, followed by
sampling on the integer lattice. Thusserves as a kind of an-
tialiasing filter prior to sampling. Step 4 is simply a truncation
operatorK y: £2(Z?) — £(Z?), defined by

sian product of»(Z?), with an elemeny(k, p) in £5(Z) in- o N

dexed 2byp €{0,1,..., P—1} andk € Z. Atypical element Knf(i, j) = f,9), —5<ii<s 5)

in £>(Z°) is a set of radially sampled projections of an object. 0, else.

A. Discrete Backprojection Operat® p, Thus, the discrete backprojecti@8y, x: £5 (7) — £2(77) is
defined by

Our goal is an implementation of tliiscrete angle backpro-
jectionoperatorBp: LY (R) — L»(R?), defined by (see, e.g., Bp ny = KySBpI. (6)
[1] and [10])
Alternately, we can write the discrete backprojection explicitly

r-1 . as
Bprg.(z,y) = Z ge(zcosb, +ysinb,, p) 1)
p=0 Bp ng(i; j)
10ur definition of backprojection does not include2a/ P weighting for L . _E <4 4 E
two reasons. First, this weighting is only correct for an equally spaced angle — zk: Zg( ’ p)m’]’k’p 2 = bhJ < 2 (7)
¢ P

distribution. Second, we want our backprojection to be the exact adjoint of the
Radon transform (see [2] for more details). 0 else
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where w

T, j b,p = //b(i—x, J—y)p(xcosbp+ysind, —kT) dx dy. BT
8

Now, it is simple to prove tha; j ., = Oforall i, j, k, p
that satisfy the following relationship —F

Wo

licos B, + jsinb, — KT| > Ry + Ry 9)

whereR, is the radius of support af and R, is the radius of © FILTER
support ofb. If we restrict—N/2 < 4,7 < N/2,thenn; ; 1 , = -
0 for all k& such that

NB/V2

K

Fig. 1. Spectral support of a radially and angularly sampled sinogramRvith
qu + Ry + N/\/§ (10) projections from an object supported on a square of 8ize N (centered at
T : the origin), with a radial bandwidth dB, and a radial sampling interval &f.
The operatolC v is a lowpass filter that passes only the regions shown.
Equations (9) and (10) indicate that the discrete backprojection

Bp n is alocal operation, in the following sense:

k| <

To construct the decomposition, we will need to define sev-
eral additional operators. The fird,; £,(Z?%) — £>(Z*) is a

Bp .y =Bp vKy (11) simple spatial shifter, parameterized by an offset 72

whereK y: £1(2) — ¢5(2) is defined by Zos (i, ) = i — 61, j — 62). (14)

R Ry + N/v2 i1 j
o o St ), g < et /V2 The second operat®;: £5/*  (z) — ¢£/% (z) is an angular
Kng(k, p) = T (12) e i 2 2 ;
decimation operator, which angularly convolves the sinogram
with a lowpass filter;y, and then downsamples by a factor of
Although our presentation of the SFHBP algorithm is high§vo- Thus
abbreviated, we will need one additional propertyBf

0, else.

throughout our analysis of the algorithm. Let us make the D;g(k, p) =Y g(k, m)y(2p — m),
following assumptions: m .
pelo, ... P/2i —1). (15)

Al) radial interpolatiori is an ideal bandlimited interpo-
lator with bandlimitB; P/t P2t
A2) P, N, and B safisfy the Nyquist criterion: Thenextoperatd¥; ;:¢&,"" (Z)—£,'"  (Z)issimplya
P > NBv2, andT, B satisfy the Nyquist crite- radial shifter, which when applied to a discrete set of projections
rion: T > /B. g(k, p) shifts thepth projection byy,, = {6;(IN/27)}1 cos 6, +
Assumption A2) is directly related to tHeow tie property {0i(/V/2’)}2sin 6, where
of the sinogram [11], in that the two-dimensional (2-D) Fourier , ,
transform of the sinogram data is supported on a bow tie shapéd(N) =(N/4, N/4Y, 62(N) = (=N/4, N/4),
region, shown in Fig. 1, from which the Nyquist criteria areés(N) = (N/4, —N/4)',  64(N) = (—N/4, —N/4)" (16)
determined.
Next, let us define a sinogram domain filt€hy: ¢1(Z) — for N > 4, and
¢P(2), thatis a lowpass filter with radial bandwidBil’, and an
angular bandwidth ofV B/v/2 (see Fig. 1). Then the bow-tie 61(2) =(0, 0, 82(2)
spectral support of the sinogram along with Assumptions A1) 83(2) = (0, —1),  64(2)
and A2), imply that [2], [12] for any/ > 1

(_17 0)/7
(=1, =1y 7

for N = 2. Because the shiff, need not be an integek, is
Brv=BrvCy L>VBV2 (13) expressed in terms of three steps:

1) interpolation to a radially continuous sinogram;
2) delay of each continuous projection y;
3) resampling of the delayed projections.

In the signal processing literature, for a fixedF' is known as a

We now present the hierarchical decomposition of the badkactional delay (FD) [13]. The operat#it can be expanded as
projection operator that leads to the simplified fast hierarchical

backprojection (SFHBP) algorithm. Proofs and details relevant  F; ,q(k, p)

to the construction of this decomposition can be found in [12]. . N g J

The manipulations and arguments used in the derivation of this o zn: 9(n, p)¢ (T(k ") '{6Z(N/2 Jhicosby
decomposition are also similar to the treatment in [2]. + {86:(N/27)}2sinb,) . (18)

B. Simplified Fast Hierarchical Decomposition of the
Backprojection
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. . j—1
Finally, we also define the operatok; ;: £/* (z) TABLE |
P2’ PARAMETERS THAT CONTROL THE SFHBP A.GORITHM
4,7 (Z) to be
Parameter Symbol
W nE. . Number of projections P
Aji = Ky DjFj i (19) Reconstruction size N
. . . Number of times to apply decomposition J
Now, we introduce an additional assumption Projection interpolation kernel é
A3) The angular filter} is an ideal lowpass filter with IAngulagaﬂti;é“%ingkﬁ“‘*fl 12
H mage daiscre 1zation kerne
cutoff W/ 2 and gain 2. Projection sampling interval T

Then, subject to Assumptions A1)-A3), the following de-
composition holds [12]
4 floating point operations, wher&,, R, and It, are the ra-
dius of support forp, +», and b, respectively. If we choose
Bry = Z Zoi() B/ i (20) J = log, ]\E,pwe rec(/())vé/r arO(NP logr;)2 N) al)glgorithm for re-
construction of anV x N image fromO(P) projections. If
Equation (20) decomposes the backprojectiofgfrojections  p — (), then the total cost i©@(N?2log, N). The parame-
onto anV x IV image into four backprojectio®p,2 n,2, €ach ters that need to be determined for this algorithm are summa-
of P/2 projections onto atv/2 x N/2 image, with some addi- rized in Table I.
tional preprocessing denoted By ; and shiftsZs, ). While |f we choosep and+ to satisfy Assumptions A1) and A3),
we omit here the derivation of (20), it is important to note that i{espectively, themk, = oo and R, = P. But for computa-
relies heavily on the bow tie support of the spectrum, or equiygnal complexity reasons, we choasand) to be finite length
alently, on (13). o o . (short) filters. These shorter filters can be used if the projections
Equation (20), and our derivation of it in [12] differs fromgre angularly and radially oversampled, a point we will return
the decompositions presented in [2] in two ways. In [2], W, |ater. For these nonideal filters, Assumptions A1), and A3)

constructed two decompositions of the backprojection operatgL-ome approximations, and in particular, (20) becomes an ap-
one exact and one approximate. These were used in Combiﬁ%'ximation instead of an equality.

tion to decompose the backprojection operator. In contrast, in
this paper, we have constructed only one approximate decom-
position—that of (20). Furthermore, (20) differs from the ap- lll. ERRORANALYSIS
proximate decomposition of [2] because the processing prior/_t\t_)
the backprojection, namel, ;, is separable, i.e., the radial _ )
and angular processing can be done separately. This separabilifyecall that to obtain a fast algorithm, we had to relax As-
of the sinogram preprocessing step is the key to the analyti§dimptions A1) and A3), and use shorter filt¢rand+. These
tractability of the SFHBP. choices will affect the quality of the approximation in each of
To use (20) in a hierarchical algorithm, we apply it recursivelyhie decomposition steps for which (20) is now only an approx-
decomposing eadB /> /- into a sum of four backprojections imation. The errors will accumulate over the multiple stages in
Bp,4, n/a- This process can continue down to the single pixéhe hierarchy resulting in errors in the final backprojection. Fur-
level, in which case the origin® p, » is decomposed into a sumthermore, the size of the error will depend not onlydoand,
of N2 backprojections of the typB ), 1, i-€., backprojection but also on the other parameters in the problem (see Table I).
of P/N projections onto a single pixel. However, for the SFHBR hus, we now turn to the problem of determining how the choice
algorithm, we allow for a parametdrthat controls the number of the various parameters affects the algorithm’s performance.
of times the recursion is used, after which the remaining backe do so, we will employ a stochastic error analysis to derive
projections are computed from definition (6) instead of usingpproximate bounds on the backprojection error that depend on
(20). For example, it/ = 1, then we decompose in accordanceach of the various parameters.
with (20). If J = 2, on the other hand, then we compute Other than the relaxation of Assumptions A1) and A3), there
4 4 is another potential source of error in (20). It is due to the fact
o ) ) ) ) that the bow-tie support result is itself an approximation (albeit a
Br Z Zs:() <Z Zoi(vjBris, vjshiat | A, very good one, see [10], [11]). However, we expect the backpro-
(21) jection error to be dominated by the error due to the relaxation

=1

Sources of Error

=1 =1

Thus, forJ € {0, ..., log, N}, we effectively decompose of Assumptions A1) and A3), and do not analyze the effects of
Bp, v into a sum o4’ backprojections, each @?/27 projec- deviations from the bowtie support. Furthermore, the bow-tie
tions onto an image of siz&/2” centered at the origin. support approximation improves with the amount of radial and

Furthermore, in [12], we show that the cost of applying (2Qngular oversampling used.
recursivelyJ times is

- ATP (R¢ YR+ [N/\/i] ) (Ry +2Ry) B. Hierarchical Error Accumulation

T We now turn to the problem of determining how the errors in
4PN?*(R, + Ry) the hierarchical decomposition propagate through the various
91 (22) stages. We will study a slightly different representation for (20)

[1]
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Ay, Bp/si -7 z(1,1)

A Ao Bp/sa zZ z(0,1)

As | Azg Bpa z 2(1,0)

g A A2,4 BP/4,1 z x(O, 0)
Ay I &

Fig. 2. SFHBP for at x 4 image.

/
g — A, Ay, .o Alog Ny v Bp/nvi Z x

Fig. 3. Path from the input projections to any pixel ininx N backprojection computed via the SFHBP.

which allows us to emphasize the frequency-domain charactpath). Thus, returning to the general case ofax N image,
ization of the errors. First, we expand (20) via (19), to obtain we will consider the system shown in Fig. 3, which maps the

4 input ¢ to a single pixele(m, n) via

Bp v = Z Zs.(xBp/2, n2Kn/2DiF1 ;. (23)

=1

.’L’(m7 7’L) = Z/BP/N, lElog NElogN—l - Elg

log N
Next, we apply (11) to reabsorb the radial truncation into the =Z'Bp/n 1 H E;g(m, n), (28)
backprojection, yielding C ol

: where we have dropped the second subscripEdbr nota-

Bp .y = Z Zs;(n)Bry2, vj2D1F1, . (24)  tional convenience (the second subscript indicated which quad-
=1 rant of the backprojected image was being processed, so that
Then, we apply (13) to reinsert the filtering prior to backprojeahese second subscripts only identify which pixel is being re-

tion, yielding constructed). Note that we define the ordered product
4 log
Bpny = Z Zs, (\)Bp/2, n/2CNn/2D1F1 . (25) H E; = Ejou NEjog v—1 - Ej. (29)
=1 N
j=1
Now, we define a new operatd: £,/ (z) — £3/*' (2) Now, let us assume thatm, n) is computed using approxi-
as mationsE; for the firstJ stages, i.e., fof € {1, ..., J}. Then
the resulting approximate pixé(m, n) is given b
E, ; = Ox/uD,F; . (26) 9 app Pixé{m, n) s given by
Then, (25) b e T
en, (25) becomes #m, ) =ZBpn, || Ej [] Bsglm, n).  (30)
4 j=J+1 j=1
Bpy= Zs. B oK 4. 27 _ L
bA ; 8i(N)BL/2, N/, 27) Thus, the per-pixel error is given by
Equation (27) is the starting point for our study of error accu- |z(m, n) — Z(m, n)| = |Om, ng]| (31)

mulation.

To construct the error bounds, let us first consider the simppereO,., ..: £5(Z) — R defined by
case of backprojecting projections onto d x4 image. This de-
composition, corresponding to (21) faF = 4, is shown graph- , I J
ically in Fig. 2. For convenience, we combine all the concate- Om.n =Z'Brn.1 H E; H E; - H E;j|. (32
nated shiftsZs, vy which shift the output into the correct lo- J=I+L =t =t
cation, into a single operat@’. We immediately note that the To pound the variance of the per-pixel error
path from the inpuly to each of the pixels in the reconstruc-
tionz(m, n) is the same (to within the shift§ used along each e(m, n) = z(m, n) — &(m, n) = Oy, ng (33)

log N
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we need a model for the distribution of the filtered projectioNext, define

datag.
First, assume that € R“*” whereL is the number of sam- I I
ples in the radial direction. From (11) and (12), it follows that y =118 -]1] & (43)
j=1 j=1
2R¢ + 2Ry + \/QN
L= T : for1 < J < log, N. Then
Next, we definéP: R“*” — RL*T as a 2-D circular convolu- J1

J
tion with a unit pulse response whose 2-D discrete Fourier trans~(.j) = H Ej —-E;
form (DFT) is 1 on the bow tie and zero elsewhere (see Fig. 4). =1
It follows that P is a projection operator. Then, we make the

j=1

~
Il

J—1 J

E,+E, [[ B -]] B
=1 =1
J-1

following assumption about < E"H V(I = 1)+ HE‘] _ EJH [1IE]
A4) The filtered projection datg satisfiesg = P#h, j=1
whereh is a white random process with varianeg. , J-1
Assumption A4) is equivalent to assuming that the sampled = EJH Y(J = 1)+ || Ay H [|E;]|- (44)
projection dataafterramp filtering, has a flat spectrum over the j=1

bowtie. The validity of this assumption is tested in our simu- )
lations in Section V, where we apply our bounds to images (§§uation (44) can be bounded by
opposed to noise fields). From Assumption A4, we have

E {|e(m, ”)|2} =k {(Om,nga Om,n9>é§(z)}
—F {(o,,wph, 0Ph>z5(z)} . (34)

- - J—1
W) < | B -n+iale] . @)

Recognizing that (1) < ||A||, it follows from (45) that

=1
Becauséh is white, it follows that v(J) < J|A]l HEH : (46)
E {|e(m, n)|*} = 57| |OP||3 (35 Thus
where the norm on the right hand side of (35) is the standard J o J J—1
spectral operator norm IHE -] & <714l HEH : (47)
j=1 =1
All2 = sup ||Ay||2- 36
IAll2 = sup Ayl (38) " ombining (47) and (42) with (39) yields

The spectral norm is of particular interest, because it satisfies , _jlogy, N—1
the following property ge(m, n) < J|Z']|2|IBp/n, 1ll2llAll2 HEH2 on. (48)

[ AH]|2 < || A|l2]|H]|2- (37) Equation (48) encapsulates the error accumulation in the hier-
archical algorithm. To form a computable bound, we need ex-

Furthermore, for any projection operator, suctPast follows pressions for the worst-case per stage dfzf], as well as the
that||P||> = 1 [14], so that (35) becomes worst-case gaif{E||.

oe(m, n) = VE{le(m, n)]’} < ow[|O]]2. (38) . Per-Stage Error

We now substitute the definition (32) into (38), and apply (37) We now turn to the problem of computing the per-stage error,
to obtain the following upper bound on the backprojection errghich is a prerequisite for using (48). To calcul§®, ||, (and

variance thus||A||), we expandE; — E; as
log N ..
oe(m, n) <oullZ' 2 1Brynallz- [ 1Bl 185012 = [[Cxyer (D5 = DjES)|, 49)
j=J+1

7 7 whereD and F are the computationally efficient approxima-
H Ej — H E; . (39) tions toD andF, respectively. Suppressing the display of the
j=1 j=1

) subscripts for notational convenience, we have

Let us introduce the following definitions: 1A, |z = HC (DF _DF+ DF — DF) H2
A =E;-E; (40) :“CD(F—F)+C(D—D)F“ .
Al = A 1Al (41) ?
Bl — o il i 42 Next, we note that becauginvolves only angular processing,
H H = pax max (H |-l j”) : (42) it does not change the radial bandwidth. ThG$) = CDC,
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where C is a radial bandlimiter, with radial bandwidtBZ. bandlimited, with radial bandwidtB7". The ideali(n) is thus

Hence given by
1Al2 = Hcfj (F—F) +C(]§—D) FH2 h(n) :zk:g(k)%(”—k) (58)
= HCbC (F - F) +C (b - D) FH2 whergqé(k) is the un}it pulse response of a filter with_ transfer
<leol e Rl e(n)l, g, o cler e

(50) The error in usingj instead ofy is then simply

where in the last step, we have ugg#l|, = 1. We will write h(n) = h(n) =" g(k) (gs(n — k) — Gs(n — k).~ (59)

(50) as k
1Al < VJ/jE]F +ef (51) T_aking '_[he discrete time Fourier transform (DTFT) of both
sides, yields
where . .
H(w) - H(w) =Gw) (Qs(w) — Qs(w))
D _ oD, . -
il (S (52) =G) (= Q). (69)
EJF = Imax HC (Fjﬂ‘ - Fj}i) ‘ (53) i . i .
@ 2 Squaring and integrating over =, | yields
N R I -
= ‘H(w) - H(w)‘ dw
21 J|wl<BT

The constants/}’, e/ ande!? fully characterize the error in-

troduced in each stage of the SFHBP. The constﬁhtan be < |JT¥L§T
interpreted as the gain of the angular decimator, Whj?eis B
the relative error of the angular decimator. The cons&ﬁnis Hence, by Parseval's Theorem
the relative error of the radial shifter. We now turn to bounding
each of these constants so as to better understand the effect of Hh — }}H < sup max
parameter choice on the algorithm performance. 2 5 |ISBT
1) Fractional Delay Relative Error:To boundsf, we first
recall that the operatdy; ; is a fractional delay operator, where
each projection undergoes a sl#iftwhich depends upopand

efwé—c}é(w)Qi/ |G(w)|? dw. (61)

2 J_,

e = Qs(w)| lgll2-  (62)

Thus, we obtain the following upper bound qu

i. We can determine the worst-case performance by looking at ef <ef' < Sup, max ‘@jwé - Qé(w)‘ (63)
a one dimensional FD problem, and taking the worst case shift. B
Thus where(); is the DTFT of the FIR approximation to a FD with

delays. Furthermore, from (63), it follows that” is simply the

F F ~
& <€ (55) worst-case peak ripple in the passband erra@pofvith respect

P . . to
wheree” is simply the worst-case one dimensional error for a
fractional delay. To compute”’, we first note that from (18) it
follows that our approximate FD applied to a signéh) has
the form of a standard FIR filtering operation

Remarks: 1) Although in principle the FD filter§)s are alll
derived fromg¢ via (18), we will permit the additional freedom
of designing the filterg independent of the choice ¢f We do
this because’ depends on the minimax error, which can be
R optimized for the discrete filters. 2) Different filter orders can
h(n) = Z g(k)gs(n — k) (56)  be used for different, to minimize the right hand side of (63).

k 2) Angular Decimation Gain and Relative ErroMext, we
turn to the angular processing in the formIdfandD. Substi-

wheregs(k) € ¥4 is an approximation to the ideal FD f”ter’tuting an approximate filted into (15), we have

and depends on a shifte [-0.5, 0.5]. From (53), we would

like to upper bound|/C(F; ; — F; ,)||. ButC, F; ; andF, ; , Po1
are all shift invariant (convolutional) operators, that act on each D,g(k, p) = Z g(k, m)y(2p — m). (64)
projection by filtering. Thus, they commute, and m=0

- . Recall thatg is periodic with respect to its second argument,
el =max||(F;, - F, ;) C B7) i ; ; e Lo ;
J < dyi Jri : with periodP. We will not assume that is periodic, although it
is a standard DSP result that convolution of a periodic sequence
Equivalently, we need to find a bound on the approximationith an aperiodic filter can be mapped to the convolution of two
error ||[F; ; — F; ;|| for signalsg € ¢4(Z) that are radially periodic sequences with the same period [15].
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Thus,D consists of the following steps: 1) convolution ofUsing similar manipulations, we also arrive at the following
g(k, -) with ¢ for eachk, downsampling of the result by afactorupper bound foe?:
of two in the second argument. The approximation errddab
D clearly does not depend on the first indexSo we consider D <
instead a one-dimensional (1-D) problem in which a periodicts S \/— |l|<1\}]§f})—(/23+1
signal g with period P is convolved with a nonideal low-pass

filter prior to downsampling. Furthermore, from (52), (54), and 2l 5 ? 4 2r(l+ P/2)\ |*
Fig. 1, it follows that the output is postprocessed withwhich P/21 1 P/2i-1
bandlimits the result. (70)
Let U(w) denote the DTFT of. Let  denote the decimated
convolution ofg with ¢, i.e., We can further simplify (69) and (70) by replacing thele-
pendent expressions with the following bounds:
r—-1
g(k 2n — k). (65) <P
k=0 -
1 ~ 2 - 2
<— max \/‘\I/(w)‘ + ‘\I/(w + 7r)‘ (71)
Clearly,2(n) is periodic with periodP/2. Let H(l) denote the V2 |el<rNBV2/(2P)
P/2-point DFT of one period oh(n), and letG(l) denote the EJD <P

the Fourier domain (after accounting o) as max

1 'p0i||t DFT of one peliOd of7. Then (65) can be rewritten in
< — ‘
\/_ | -|<71—NF)'\/—/( )\/

1 27l
> [G(l)\lf( ; ) +G(l + P/2) ]
An intuitive interpretation for.” ande” can be found in (71)

H(l) = .@(2”(1"'”2))} | < NBy2/4 and (72), respectively. Specifically,” is roughly the peak
P - in-band magnitude plus the peak out of band ripple ofihe
0, else. filter. Similarly, e© is roughly the sum of the peak in-band

(66)  ripple plus the peak out of band ripple for thie— 4 filter.
Now, taking the squared magnitude of both sides of (66) aRghys, if;) = +, thenv? = /2, ande® = 0. Note that (71)
applying the Cauchy—Schwartz inequality to the right hand sidgg (72) depend on the amount of angular oversampling. In

yields particular, because of Assumption A2), it follows that
[HOP <5 (GO + G+ P/2)P%) NBVZ
2 P
P P which in turn affects the set of frequencies over which (71) and

(72) are computed.
for I < NBv2/4. 3) Level-Independent and Simplified Boundst this point,

Replacing the term in square brackets by its maximum, survrvbe have obtained computable expressions for the constﬁnts

ming overl, and applying Parseval’s Theorem yields and z/D in terms of the Fourier transforms of the va[ious
ﬂlters mvolved. We have also derived boundfs, £ andv”
on these constants that do not depend on the Jevitus, (51)

h max becomes
Il < \/_ |l|<NB\/_/4
\/‘ 27rl ‘\If <27r(l+P/2)> 2 Il 1A, < vPeF 4 &P (73)
—_— . g .
P 68 which together with (41) implies that we can take
(68) |A]| = vPeF + £P. Next, we make the following simplifica-
tion. Recall that-? is equivalent to the peak in-band magnitude
From this expression, it follows that plus a small ripple term. To first order? ~ /2 = ||D;]|2.
Thus
D < F, D
' — ma. =
\/_ l|<NB\/)_(/23+1 Al = v2et + . (74)
2 : 2
2 - i Furthermore
[ g (2t P2)
P/21 1 P/2i-1

(69) |&5], < [[eneDi, IBs0, =22 1Bs1,. 75)
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Itis simple to show|F || is the peak magnitude in the passbanBHor largeP, we can then construct confidence intervals based
of the fractional delay filters. Thus, a good approximation isn (82). For example, we can expect that over 99% of the errors

|F;]| = 1, so that||E; || < ;/]D =+/2, and in the (m, n)th pixel (over an ensemble of sinograms) will lie
in the interval[—3c, 3¢], wherec = J/P/3T(v/2eF 4-eP)oy,.
HEH =". (76) We will also return to (82) as a possible means of selecting an
2

operating point for the algorithm.
Combining (74), (76) and (48), and noting thHgZ'||; = 1, Note that bound (82) increases with This would appear to
yields the following bound: suggest that the error increases as the number of views is in-
¥ creased. But our definition of the backprojection operation [see,
F | D iV e.g., (1)] is unweighted by/ P, so that the signal level in the
ve(m, n) < JIBryxllz (\/55 e ) \/Zah' (77 backprojection also increas/es with When the error is normal-
ized by standard deviation of the signal (to form a signal to noise

Equation (77) can be further simplified by writif@ /. 1 | ratio), the dependence afiP cancels out

explicitly. From (7), it follows that

IV. DISCUSSION OFBOUNDS
Br/v.allz = Z Z 5,0, k. p° (78) _ _ .
E p Prior to an experimental study of the bounds we have derived,

] ] o . it is interesting to note that we can already draw some conclu-
Consider a circularly symmetric image sampling ketfsee  gjons from the forms of the bounds. In this section, we will state

(4) or (8)] with a 2-D Fourier transform(w), wherew is the  hose conclusions, which will then be tested via simulations in
radial frequency. Then it can be shown by means of Parsevals next section.

Theorem and the Fourier Slice Theorem (see [10]), that subject
to Assumption Al) A. Choice of/

P B ) 172 The first point of interest is the choice of the parameter
IBr/n,1ll2 = T </ |b(w)| dw) . (79) Note that (82) dependinearly on .7, so that doubling/ (or
n 0 equivalently halving the size of the smallest backprojection that
For the special case thiais the indicator function for a disk of is decomposed) doubles the approximation error. On the other

radius 1/2 (which is the choice we use in our implementation fnd, the cost expression (.22). indicates that the cost decreases
Section V), the right hand side of (79) can be expressed in terfRyanly eﬁpgnehntletl(;ygastr\]mth mcrelase?d Hence, t.?)? b(;unds
of hypergeometric functions [16]. For simplicity, we prefer tguggest thai’ should be chosen as large as possible (i.es

bound (79) by log, N), with the errors controlled via the radial and angular
oversampling and filter lengths.
P oo 9 1/2
IBr/w.illz <4 777 </0 |b(w)| dw) B. Radial and Angular Oversampling and Filter Lengths
op Another conclusion that can be drawn from (81) is that the

(80) error bound depends e and<? in an additive fashion. This

o . 3NT means that the approximatiorisands to the ideal radial and
Substituting (80) into (77) yields angular filters should be chosen so that they contribute roughly
equal errors to the output. Put another way, the bound depends
oo(m, n) < Jy [ £ (\/QEF I ED) on. @81) onv2e" +eP. Thus, ife” is made very small (by taking long
3T FD filters) relative to=?, then the overall accuracy of the algo-

Equation (81) is simple in form, and bounds the error varianééhm becomes dominated by’. .
for the (m, n)th pixel. But the right hand side does not depend Next, we turn to the question of radial and angular oversam-
on(m, n). Thus, we can replace (81) by the following uniforn®ling. Let us assume that the input data is sampled radially and

bound angularly at the relevant Nyquist rates. From (63), it follows that
the radial component of the error is the ripple in the FIR approx-
nax ge(m, n) < J\/E (\/§EF +€D) on. imation to an allpass filter with a phase response’sf?, and
—N/2<m, n<N/2 - 3T the angular component of the error is determined by the pass-

(82) pand and stopband ripple in a short approximation to an ideal
Equation (82) serves as the basis for our analysis of the parangular low pass filter with cutoff /2 and no transition band.
eter choices on the backprojection performance. In additionltas well known that both of these errors will be large, because
serving as a useful design tool, (82) also provides us with cahe desired frequency response is discontinuous [15]. Thus, it
fidence intervals for errors in the reconstruction. Indeed, frofollows that some radial and angular oversampling are required
(32), it follows that each error term(m, n) is a weighted sum for the errors to be made small.
of random variables. Furthermore, this weighted sum involvesWe can draw some further conclusions for the angular fil-
at leastP terms with roughly equal weights. Hence, we can ajering case by employing the well known empirical relationship
peal to the Central Limit Theorem (CLT) to argue that the errolsetween filter order and approximation error for minimax-op-
e(m, n) should have an asymptotic Gaussian distribution [LAjmal lowpass filters (see [15, p. 480]). It has been demonstrated
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that for filters with a ripple of. in the passband and stopband, TABLE I
the filter order necessary to achieve that ripple is PARAMETER CHOICES COMMON TO THE VARIOUS SIMULATIONS
loe Parameter & Symbol Value
M, x ek (83) Projection interpolation kernel (¢) sine(t/T) cos (%)

Aw for [t] < 5T
. . . L Radius of support of ¢ (Rg)
where Aw is the width of the transition band. If the original Radial sampling interval (T') 1.0

projection data were angularly sampled at the Nyquist rate Tmage discretization kernel (b) b;u y)2 = 1 for
P > NBy?2, then upsampling angularly by a factor of , Ay sy

. .. Radius of support of b (Rp) 1/2
K, = P/NB+/2 means that the width of the transition band Radial Bandwidth (B) W
is given by

A (Kq— 1) C. Design Considerations
w=————".
K, The bounds suggest the following scheme for parameter se-

lection:

1) choose.J as large as possible (i.e., decompose to the

single pixel level);
2) choosep andy so thaty2¢F ande® contribute equally

eD ay e (BaMalKa—1)/Ka) (84) to the total error;
3) keep oversampling (though necessary both angularly and

From (84), it follows that the approximation error decays fairly radially) to a minimum.
slowly with increasing oversampling but fast with respect tm principle, with (86) and (87), the problem of parameter se-
filter order A, . Similar conclusions can be drawn starting fronfection could be reduced to an optimization problem, in which
Lagrange and the so-called central sampling formulae (see [18} costE is fixed, and the error is minimized, or the error is
and [19], respectively). fixed and the cosE is minimized. The resulting problem is a

For the radial processing, results on FDs can be found in [2@hnstrained integer programming problem that can be solved by
[21], which suggest a similar relationship between filter ordegxhaustive or other techniques [22]. This automated approach
and approximation error and bandwidth as in the angular cageparameter selection, while promising, is beyond the scope of
In particular, for a passband ripple @f and a “transition band” this paper. We will instead focus on simple “rule of thumb” re-
of Aw, the filter orderi,. satisfies (83). For a signal upsampledults that can be found through numerical simulations.
radially by a factor of{,, = »/BT, we have that

Thus, noting that” depends directly op, the relationship be-
tween the approximation erre’, the filter orderdZ, and the
oversampling factor of(,, is given by

V. SIMULATIONS

(K, —1)
Aw = T K. In this section, we present some numerical simulations which
demonstrate the usefulness of the bounds in characterizing per-
Thus, we conclude that formance of the SFHBP algorithm. Our goal is to demonstrate
F ay o (B ML (K —1)/ K ) (85) that the bounds correctly predict the various trends of algorithm

performance as a function of parameter choice so that they can
Again, the error bounds decrease exponentially fast in the fil k:reqeutsheedggaglissli%asL;rspt(z)se:\.r;rr]npe?(retrlcsuel;ré;\:)env'zlrl:;\tlarle%iligi-e d
order but rather slowly in the amount of oversampling. Equa- P

tions (84) and (85) can be substituted into (82) to yield the fo'tl'a;??hzre\gfgsssgcu?g' .Lhai%enzxﬁ]igzg:t;:l(sjzrseggrfoo}/?ﬁ;y
lowing expression: various approximat : var

bounds are valid. In the course of the various simulations, some

max o.(m, n) of our parameter choices were common throughout. These pa-
(m, . .

mn rameters, and the related constants are summarized in Table Il.

[P B e
<JVEKK, 3T (\/5(3 (8 Mr (K =1)/ K+r) A. Error and Bound Evaluation

+ 6_(,30,1\40,(1(”_1)/1(0,)) on  (86) To evaluate the error, in principle, we need to compute
backprojections of an ensemble of images using the direct and
where we have also substituté— k,P, T — T/K,. Fur- SFHBP algorithms, and then study the error variance at each
thermore = can also be modified to account for the additiond?*€l and compare it to the upper bound. In practice, however,
cost of applying the SFHBP algorithm to upsampled projectiod¢ instead approximate the error figlB — B)g as an ergodic
(as well as using potentially longer filters in the radial and afi@ndom process and compare the rms error

gular filtering steps). The resulting expression is HBg _ BQH
2
4K, K, P Oe N (88)
3:—<J(M,,+Rb+{N/\/§D N .
T to the upper bound (86). Thus we compare the spatially averaged

(M, +2M,) +

N2%(Ry + Ry) (87) error variance to the bound instead of computing an average over
2J an ensemble of images. Furthermore, we scale both the estimate
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Fig. 5. Contributions of the radial and angular processing to the error bound

. . . . L as a function of filter order.
Fig. 4. For the circulant—block—circulant bow tie projection operator, the rank

of the matrixP, is determined by the number of samples that fall in the bow

tie region (shaded). in [20], [21]. We then calculated/2s ande? for filters of
different length and tabulated them. The results of a typical

and the bound by the rms backprojected value, so that errors 846h experiment are shown in Fig. 5, which indicates the results

be expressed in percentages. for K, = K, = 10/9.
To compute (86), we also need to estimagerom g. Letgg From Fig. 5, two features are immediately noticeable. The
denote the average signal power in the sinogram first feature is that” decreases in “steps,” so that angular filters

of order4m — 2 and4m yield the same error. This behavior is
a result of the fact thaﬂz}(n) is a “half band” filter [24], and
that (except fom = 0) has zero taps for all even valuesaf
Furthermore, convolution with these half band filters requires
half the computational effort that we assumed in the derivation
of =.

2 _ llgli3
ol = (89)

whereS is the number of points in the supportgf From the
law of large numbers and Fig. 4, it can be shown [12] that

5 1 5 The second feature of Fig. 5 is that the decay rates for the
% ¥ oK, K, " 0)  radial and angular errors satisf =~ 243, ~ 2.4, so that for
) a given error, the angular filter needs to be twice as long as
or equivalently the radial filter to contribute an equal amount of error to the
bound. The most likely explanation for this phenomenon is that
on = ||gll2 % (91) the transition bands for the radial filter are of the fo#rf(1 —

S a)m, 7|, while the transition bands for the angular filter are of

We can thus relate;, to the measureé, norm of the projec- the fOI‘m:I:[oc7r/2,. 7 —aar /2]. The transition bands fo'the radial
tion data. The last step is to incorporate this estimate into tfier, when considered of), 2], form a larger transition band

bound. Combining (88) with (91) and (82) yields the followin _f twice the width, _V\_/hile the same is not true for the angular
bound: ilter (the two transition bands are separated by a stop band).

We conjecture that this is the reason for the difference in decay
rates. Furthermore, this difference motivates us to choose

[Bo-B9], _ 1. [PERE, (V2T +P).
[Bgl: =" TBglz V35T M, =2M,. (93)

(92)

C. Effective Signal-to-Noise Ratios and Optimal Tradeoffs

B. Filter Order and Oversampling At this point, we can make some predictions about the

Our first goal was to determine an empirical rule relatinfadeoff between oversampling and filter orders. An under-
the radial and angular filter orders. To that end, we performétanding of those tradeoffs is facilitated by rephrasing the
a series of experiments in which we fixed the bandwith bounds in terms of an effective signal-to-noise ratio (SNR).
angular and radial oversamplind({ and K, respectively), Consider the approximate algorithm with the exact sino-
and designed the relevant minimax-optimal angular and rad@iem datag, and the direct algorithnB p, y with noisy data
filters. The angular filter was designed using the standag(k, p) = g(k, p) + w(k, p), wherew(k, p) is a white noise
Parks—McClellan algorithm [15]. The radial filtter was a FOprocess with variance?,. The noisew(k, p) will contribute
filter with delay 1/2 designed using the extended Parks-Man error variance ob%(m, n) to Bp ng'(m, n). Recall that
Clellan algorithm developed in [23]. More details on the?(m, n) is the variance of Bp, y — Bp, x)g(m, n), i.e., the
problem of minimax-optimal design of FD filters can be founger-pixel error variance due to the approximations.
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The effective SNR is defined as the SNR in the measureme
¢’ such thaw}(m, n) = o2(m, n) for somea < 1. At this ef-
fective SNR, errors introduced by the fast algorithm have vai
ance equal to the error variance due to measurement noise. 4|
example, if the true measurement SNR is 3towthe effec-
tive SNR, then the errors due to the FHBP contribute no mox ggt
than an additional 50% in error variance to the backproject&
variance. g

To compute the effective SNR, we first calculaﬁa It can be

shown that

o
ot

1]

-

(5,18
I

dB)

60 -

40t

EFFECTIV

UJ% = ||Bp71||30'3). (94) 20

From (80), it follows that for the circular pixel choice &f(94) o
is2

—20 I I I I
2P , 95 0 50 100 150 200 250
ST Tw (95) SPEEDUP

Now, from (82), we know that the fast backprojection conFig. 6. Normalized speedup versus error dependance for the bounds as a
tributes a variance of function of filter order M (increasing speedup for smalléd) and over-

P ) sampling factori’.
o2 < J? 3T (\/§5F —|—5D) ol (96)

If we use the relationship betweey ando;, from (90), we can
rewrite (96) as
2PK, K, 2
2 2 a’trT F D 2
o, < J 57 (\/55 +e ) oy (97)

Suppose we look at the casg = o%. Then from (97) and

(95), we find that
2

o2 = J’K, K, (\/QeF +ED) 2. (98)

w g

2 _
O—f—

We can also dividerg by o2 to obtain an expression for the
effective SNR

2
ag 1
2
w

= KaKTJ2 (\/§5F +5D)2'
When we choose the algorithm parameters, we will trade t
effective SNR for algorithm speed. To measure the speed,

calculated the speedup using (87) and the parameters in Tabilq
The resulting speedup for the case= log, N is

15N
K, K, (Mlog, NvV2+3)

We (.:an HOW P!Qt the effect_lve SNR against the speedup, aﬂ&’ 7. Phantom used for th€ = 512 pixel experiments. For th& = 256
obtain an intuitively meaningful assessment of the boundsxel experiments, the subimage indicated by the white rectangle was used.
Fig. 6 shows plots of the effective SNR (in decibels) versus

the speedup fol’ = K, = K, € {1.25, 1.5, 2.0}, and jnethatthe optimal (in terms of maximizing speedup) choice is
M € {4,6,...,20}. SmallerM lead to larger speedups forg — 1 5 ps — 12, with a resulting speedup of almosts0
a fixed amount of oversampling. Calculations were performed
assumingV = 210, _ _ _ ~D. Bound Verification
From Fig. 6, we canimmediately determine optimal operating Our second goal in this section is to verify the usefulness of

points for the fast algorithm, given an estimate of the MeasUIRe bounds in predicting the behavior of the SFHBP algorithm

mentnoise. Forexample, ifthe projections are corrupted by nms&h respect to parameter choices. We were unable to obtain data

toan SNR of 40 dB, then we can operate the algorithm so that the .
) . . ; . rom a CT scanner for testing the bounds, so we elected to gen-
effective SNR of the fast algorithmis 43 dB. This choice guaran- . o T i
. o . erate synthetic projections from a CT reconstruction in the vi-

tees that the errors in the backprojection contribute half as much

power to the errors in the final image as the errors in the m sual human dataset (VHD) [25]. Specifically, we used slice 1194

surements themselves. Furthermore, from Fig. 6, we can de r(;)_m the Visual Female dataset, which is shown in Fig. 7 win-
' ’ 9-5 dowed to [0, 100] Hounsfield units for display purposes only.

2Equation (80) remains valid whe/N is replaced by Note that the slice is fairly challenging to reconstruct accurately

(99)

a;

(100)
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Fig. 8. SFHBP performance versus the bound for various choicés of  Fig. 9. SFHBP performance versus the bound for various choices of the
fractional radial bandwidth.

due to the high contrast from the high density bone regions a“'101
the structure in the surrounding soft tissue. The original sci
was512 x 512 pixels in size. For our experiments, we used th —— BOUND
256 x 256 subimage of the phantom indicated by the rectangul
region in Fig. 7. 10°
The first experiment was to verify the behavior of the cost a
error bounds with respedt To that end, we took the56 x 256
phantom subimage, and computBd= 1024 projections using
a discrete approximation to the Radon transform wWith= 1,
found by taking the adjoint of (1). The projections were the
ramp filtered with the Ram—Lak filter [26] with a cutoff &7 =
0.8r. This cutoff is equivalent td(,, = 1.25 and K, = 1.13.
We then computed an exact backprojection via (1), and a <
ries of fast backprojections using the SFHBP algorithm wit
different choices for the parametdr The radial filters were
fourth-order minimax-optimal fractional delays, that were com ¢ ‘ : ] ] :
puted using the techniques described in [21]. The angular filt 4 ¢ 8 FILTEF; %RDER 12 1 16
was a sixth-order lowpass filter designed usingrtegez com-
mand in MATLAB [27]. The error bound and the actual a|go_Fig. 13[ SFHBP performance versus the bound for various choices of the filter
rithm errors are compared in Fig. 8. The agreement between the
bound and the algorithm performance is good, suggesting that )
the derived expressions for the error bounds and cost accurafii§" 1ength are shown. For the shorter filiéf = 4, the bounds
model the effects of choosing, aré accurate for the range&f For the longed = 12filter, the

The second experiment was to verify the behavior of the enlagunds fail for errors lsmaller than O.;%. This suggests tha_t the
bounds as afunction of the oversampling fadtor= K, = K. fgllure of th_e bounds is due to errors in Fhe “exact” baz_:kp_rOJec-
The same phantom was used as in the previous experiment, JigR- In partlcular,_our e?<act backprojection uses a rao!|al fitter
the same number of projections. In order to simulate the oversaif£€ Tablell) thatisnotideal. Thus, errors are presentin the exact
pling process without implementing noninteger oversamplinpaCkprOJeCt'on which dominate the errors of the fast algorithm

we simply bandlimited the projections oK — 1)/ K)= in the

ROR

NORMALIZED RMS ER

e
o

-2|

or long filter lengths or large amounts of oversampling.
Ram—Lak filter. This serves to simulate the effect of radial and '€ third experiment was designed to verify the predicted

angular oversampling on the error behavior of the SFHBP algg?St and error behaviors as a function of the filter order
rithm3 The filters were designed optimally for each choice off{« = 2M, = M. The phantom and” were the same as in
(K — 1)/K € {0.5,0.6,0.7, 0.8, 0.9}. For eachk, both an the previous experiment. The cutoff of the ramp filter was set
exact backprojection, and a fast backprojection (with= 7) {0 0-87, simulating a radial oversampling factor &f, = 1.25
were computed. The error and bound were computed via (9270 @n angular oversampling factor &f, = 1.13 in the

The results are shown in Fig. 9. Two different choices for radig BP- The filter orderd/ was then varied over the range
M € {4,6, 8, ..., 16}, and the normalized error calculated.

3Although this simulated oversampling does not allow us verify the effects S}he result is shown, with a comparison to (92), in Fig. 10. The
oversampling ofE, these are straightforward. agreement between the bound and the measured performance
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approximation and ergodic assumptions are justified for mod-
eling the per-pixel error distribution.

VI. CONCLUSIONS

We have presented an error analysis for a simplified version
of our FHBP algorithm. The analysis lead to useful informa-
tion on the behavior of the reconstruction error as a function of
interpolator length, oversampling, and the paramétewhich
determined the number of times the backprojection was decom-
posed. Simulations on a slice from the Visual Human Dataset
support the bounds, and verify the proposed schemes for param-
eter selection. Future work might build upon these error bounds
by allowing for different interpolator lengths at different stages,
or focus on error bounds that do not use bandlimited models.
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