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ABSTRACT

Existing algorithms for exact helical cone beam (HCB) to-
mographic reconstruction are computationally infeasible for
clinical applications. Their computational cost is dominated
by 3-D backprojection, which is generally an ��� �� oper-
ation. We present a fast hierarchical 3-D backprojection al-
gorithm, generalizing fast 2-D parallel beam and fan beam
algorithms, which reduces the overall complexity of this
step to ���� �����, greatly accelerating the reconstruc-
tion.

1. INTRODUCTION

Helical cone-beam tomography has several advantages over
traditional two dimensional tomographic imaging, includ-
ing decreased scanning times and increased x-ray source
utilization. However, image reconstruction from cone beam
projections relies on inversion formulas [3], [2] of higher
complexity than those found in two dimensional tomogra-
phy. These algorithms consist of two phases. First, the cone
beam projections are individually “filtered” by a spatially
varying filter implemented by a combination of weighting,
2-D parallel-beam radon transform, and differentiation. Sec-
ond, the filtered data is backprojected over the image vol-
ume. This second phase has complexity of ��� �� � for
reconstruction of an � �� �� voxel image from � pro-
jections. Generally � � ����, which results in an ��� ��
operation and accounts for a large amount of the computa-
tion in the reconstruction process.

Several fast algorithms for backprojection in two dimen-
sional tomography exist. Algorithms based on hierarchi-
cal decomposition reduce the complexity of the backprojec-
tion operation by successively subdividing the reconstruc-
tion area into smaller nonoverlapping regions. As the re-
gion size decreases, the number of projections necessary for
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Fig. 1. Helical Cone-Beam Acquisition

accurate reconstruction also decreases. The number of pro-
jections can then be reduced, which reduces the computa-
tional complexity. This hierarchical decomposition of the
backprojection operation initially developed for 2-D paral-
lel beam [1], was extended to fan beam [5] and 3-D cone
beam with a circular trajectory (CCB) [4], [6]. Here we
extend the method to the more general divergent-beam ge-
ometry of a helical trajectory. HCB does not suffer from
the inherent artifacts present in CCB but carries a higher
computational cost. The fast CCB method decomposes the
volume only in the x and y dimensions. Here we fully de-
compose the volume along all three dimensions. This is im-
portant for accurate reconstruction with a helical trajectory,
and for extensions to an arbitrary trajectory.

2. ALGORITHM DESCRIPTION

2.1. 3-D Cone Beam Backprojection

Figure 1 shows the setup for helical cone beam projection
data acquisition. An x-ray source is placed at equally spaced
intervals along a helical trajectory parameterized by ����� �
�� ��	�
� 	���
 ��

��
� where � is the distance between the

source and the z-axis and  is the pitch of the helix. The de-
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Fig. 2. (a)Octant Decomposition, (b)Recursive Decomposi-
tion

tector plane is assumed to contain the z-axis and be perpen-
dicular to�����. After the filtering step is completed for each
cone beam projection, the filtered projection data �� ��
 �
 ��
is backprojected onto the image volume according to
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� �������
 ������
 ����
 ������ (1)

where � �
 � � represents an inner product and the detec-
tor plane coordinate �����
���
 ����
���� is the projection of
the point �� when the source is located at �����. Each ob-
ject point requires a sum over all the projections, leading to
an ����� � complexity for the entire image. This recon-
struction of the object directly from the filtered projection
set using (1) will be referred to as the conventional back-
projection algorithm for the remainder of this paper.

2.2. Object Decomposition

Consider reconstructing regions of the final object separately
as depicted in figure 2a. Each octant can be reconstructed in
turn, and after being placed in the proper location will yield
the final reconstruction. Although each octant requires only
1/8 the amount of work of entire reconstruction, the total
amount of processing is unchanged.

Hierarchical algorithms are based on the principle that
the number of projections needed to accurately reconstruct
an image is proportional to the size of the image. A single
octant in the decomposition has reduced each dimension by
half relative to the original problem size. The number of
projections required to accurately reconstruct each octant
should therefore also be reduced. The method for achieving
this reduction in projections is motivated by the procedure
developed for fast 2-D fan beam [5] and 3-D circular trajec-
tory cone beam backprojection [6], [4].

The filtered projection data is denoted as �����
 ��, where
�� is the (possibly two dimensional) detector position and �

indexes the source position. Studies on the spectral support
of �� state that the number of projections required for an ob-
ject with support restricted to a radius � from the origin
is proportional to � . If the number of projections exceeds

that value, the projections are oversampled with regards to
� and can be decimated to reduce the number of projections
while still maintaining accurate reconstruction. This is im-
plemented via an angular filter followed by decimation

������
 �� � � �� ������
 ��� (2)

where � is a 1-D low-pass filter and the convolution occurs
only along the � dimension. The set ��� now contains half
as many projections as �� , but can still accurately reconstruct
the desired region. The backprojection itself now only re-
quires half as many operations.

The above analysis holds for objects centered at the ori-
gin. To adapt this to non-origin centered objects, the pro-
jection data is first shifted relative to the projection of the
center of the region. The data then mimics the case that the
object center was at the origin. Then the projection data can
be decimated and the resulting projections shifted back to
their original positions for backprojection. In the parallel
beam case, this shift exactly represents moving the object to
be centered at the origin. In the case of divergent beam to-
mography, this shift is approximate but successfully reduces
the required number of projections for reconstruction.

For helical cone beam data, this process is described as

�����
 �
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� ����
 �� (3)

��

�
���� and � �

�
���� are the � and � coordinates in the de-

tector plane of the projection of the region center �� when
the source is at position �. The second step involves con-
volution of ��� with the 1-D low-pass filter � along the �

dimension. The projection data ���� is then backprojected
over the volume of interest using (1).

To demonstrate the applicability of this approach for
HCB, consider an object consisting of a small sphere. The
hierarchical algorithm, described in the next section, was
used to generate a decimated (by a factor of 8) set of projec-
tions that include a region of interest in the neighborhood
of the sphere. This projection set is used to reconstruct the
entire object space. Figure 3 shows a plane of the image
that intersects the sphere. The colormap has been inverted
to show detail. Spoke-like artifacts associated with an inad-
equate number of projections are visible in the reconstruc-
tion, but those artifacts lie outside the region of interest, de-
noted by the rectangle. Therefore, those artifacts will be
truncated and do not affect the final image reconstruction.

2.3. Fast Hierarchical Algorithm

Decomposing the object into 8 octants, decimating the pro-
jections using the above procedure and backprojecting the
the resulting projections reduces the overall computational
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Fig. 3. Reconstruction from Decimated Projections

requirements of the algorithm. In order to reduce the com-
plexity of the backprojection operation, this decomposition
must be applied recursively. Each octant is successively de-
composed into smaller suboctants as shown in figure 2b.
After every subdivision, the projections are shifted and dec-
imated using (3) and the center of the suboctant. This divi-
sion continues until the octant has reached a minimum size,
such as � � �, which limits this decomposition to being
performed at most ����� times. The number of projections
is halved at each decompsition, so after ����� stages there
are �� �

������
� � �� �

	
� � ���� projections. Since each

point is reconstructed from ���� projections, the entire ob-
ject can now be reconstructed in ��� ��. The algorithm
does have additional work in the shifting and decimation
of projections, and that portion will be what leads to the
������� �� complexity.

Under the approximation that an����� object gen-
erates a set of projections that are each ��� �� in size, shift-
ing and decimating an object’s projection set requires work
proportional to �

�

	
�

�
. At a particular stage � in the decom-

position, there are 
 subregions of size 	

��
, each having

�

��
projections. Shifting and decimating these projections

for each subregion will require approximately �

��
	

�

��
, result-

ing in �� � work to shift and decimate all the subregions.
This shows that the amount of work at each stage is roughly
constant and ���� ��. The number of stages is ����� , so
the overall complexity becomes ���� ���� ��. Replacing
� � ���� yields the final complexity of the algorithm
to be ��� ���� ��, which is a reduction in order from the
����� complexity of (1).

2.4. Tunable Parameters

The above algorithm involves shifting and angular filtering,
which must be done accurately for good object reconstruc-
tion. Longer filters give better reconstructions but also re-
quire more computation, resulting in a trade off between
speed and accuracy. An additional consideration is how
well the angular oversampling assumption holds. The origi-
nal projection data may have a source position sampling that

is very close to that of the rate required to reconstruct the
object, and therefore the resulting decomposition is close
to the limit of the necessary number of projections for dec-
imation. A simple way to address this issue without sig-
nificantly increasing the length of the angular filter is to
perform a single level decomposition without performing
the decimation step, or equivalently decomposing the object
into 64 subregions for the first stage. This means that each
octant now has twice as many projections, making it easier
to satisfy the angular bandwidth requirement. The number
of times a non-decimated decomposition is performed is re-
ferred to as the holdoff factor. The drawback is that since
each octant now has twice as many projections, the algo-
rithm must perform twice as much work than if no holdoff
were used.

3. RESULTS

Simulated projection data for the standard 3-D Shepp-Logan
phantom was generated using analytical expressions for the
cone beam projections. The data was then filtered [2] fol-
lowed by backprojection onto a ���� voxel grid using both
the conventional and hierarchical backprojection methods,
with a holdoff factor of � in the hierarchical method. Fig-
ures 4-6 compare slices through the reconstructed images,
and show good agreement. A very tight range of values
is displayed in order to show the differences between the
two algorithms. Backprojection using the conventional al-
gorithm required 67.6 hours whereas the hierarchical algo-
rithm required 4.7 hours, a speedup of 14.4. Further opti-
mization in the code implementations will change the rel-
ative speedup between the two. However, the hierarchical
algorithm has several parameter selections (filter type, fil-
ter length, holdoff factor) that can be adjusted along with
code optimizations, which may result in an even faster re-
construction using the hierarchical method.

Another method of comparison is the total number of
floating point multiplies and divides in the respective al-
gorithms. As a metric, we define the Multiplicative Effort
as the total number of floating point multiplies and divides
performed in an algorithm. This aids in isolating the data-
driven component of the algorithm from other issues such as
processor speed and memory size that are relevant to the ex-
ecution time. For the � � ��� case, the conventional algo-
rithm requires a Multiplicative Effort of ���� ��
��, whereas
the hierarchical algorithm requires a Multiplicative Effort of
���� � �
��, a ratio of ���. The measured speedup in exe-
cution time was similar to this ratio.

The Multiplicative Effort for the conventional algorithm
and the hierarchical algorithm are compared in figure 7 for
a range of problem sizes of � � �� to � � �
��. This
plot shows the reduction in order of the hierarchical algo-
rithm which indicates the computational savings become



Fig. 4. Reconstruction slices y = 66 (left column) and z =
0 (right column) for conventional (top row) and hierarchical
(bottom row) backprojection methods. The grayscale win-
dow is [1 1.05].
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Fig. 5. Cut (x=0,y=66) through conventional (solid) and
hierarchical (dashed) reconstructions
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Fig. 6. Cut (y=-63,z=0) through conventional (solid) and
hierarchical (dashed) reconstructions
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Fig. 7. Multiplicative Effort Plot: Solid = Conventional,
Dashed = Hierarchical

even more substantial as the object size increases.

4. CONCLUSION

In this paper, we described a fast hierarchical algorithm for
3-D backprojection in helical cone-beam tomography. The
algorithm gives comparable reconstructions to the slow, ex-
act backprojection, and results in a speedup of over an order
of magnitude due to its reduction in the computational com-
plexity.

5. REFERENCES

[1] S. Basu and Y. Bresler. An ��� � ����� filtered back-
projection reconstruction algorithm for tomography. In
IEEE Trans. Image Processing, pages 1760–1773, Oc-
tober 2000.

[2] H. Kudo, F. Noo, and M. Defrise. Cone-beam filtered-
backprojection algorithm for truncated helical data. In
Phys Med Biol, pages 2885–2909, 1998.

[3] K. C. Tam, G. Lauritsch, and K. Sourbelle. Exact (spi-
ral + circles) scan region-of-interest cone beam recon-
struction via backprojection. In IEEE Trans. on Med.
Imaging, pages 376–383, May 2000.

[4] S. Xiao. PhD thesis, University of Illinois at Urbana-
Champaign, 2001.

[5] S. Xiao, Y. Bresler, and D.C. Munson. ��� � �����
native fan-beam tomographic reconstruction. In Proc.
1st IEEE Int. Symp. Biomedical Imaging, ISBI-2002,
pages 824–827, Washington, DC, July 2002.

[6] S. Xiao, Y. Bresler, and D.C. Munson. Fast feldkamp al-
gorithm for cone-beam tomographic reconstruction. In
Proc. ICIP 2003, January 2003.


