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Abstract— The sampling requirements of tomographic projec-
tion data are determined by the set of frequencies occupied by the
Fourier Transform of the projection data. This region of essential
support has been analyzed for various 2-D geometries. The general
case of 3-D cone beam projections, using a 2-D detector array,
is mainly unexplored. In this paper, we consider the 3-D circular
cone-beam (CCB) scan. An analysis of the essential support of
CCB projection data provides the sampling requirements for
detector spacing, row spacing, and projection count (views).

I. INTRODUCTION

The sampling requirements of tomographic projection data
are determined by the set of frequencies occupied by the
Fourier Transform of the projection data. Since the object being
scanned is spatially limited, it’s spectral support (and the spec-
tral support of its projections) cannot be strictly bandlimited.
Therefore it is common to refer to the essential support of the
spectral content of the object and its tomographic projections.
The essential support is defined as the region outside which the
magnitude of the spectral data decays exponentially.

The cases of 2-D parallel and fan beam data have been
previously studied [1] and the essential support has been shown
to have the shape of a bow tie, which is a function of the size
of the object and the geometry of the scan. The special case of
3-D scanning with a 1-D detector array has also been analyzed
[2]. Here we consider the 3-D circular cone-beam (CCB)
scan, which has not been previously explored. An analysis
of the essential support of CCB projection data provides the
sampling requirements for detector spacing, row spacing, and
projection count. This ensures that the continuous projection
data can be recovered from its sampled version. Because the
CCB geometry does not provide a complete data set, this can
not guarantee artifact free 3-D reconstruction. However, it does
ensure that the reconstructed volume will be free of artifacts
due to undersampled data.

II. DEFINITIONS

A CCB scan is shown in Figure 1, with cone beam pro-
jections g(u, v, β) collected on a flat panel detector index by
horizontal detector offset u, and vertical detector offset v.
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Fig. 1. Circular Cone Beam Scanning

The x-ray source rotates in the x-y plane at a distance D
from the origin, with source angle denoted by β. The detector
plane rotates with the source and is mathmatically defined as
containing the z axis. Define the cone projection of point �x from
source position β as the detector plane position (ux(β), vx(β)).

The object being scanned is assumed to be bounded by a
cylinder of radius R and height Z, which is a typical object
support for CCB scanning. It is also essentially supported on a
sphere of radius Ω in the Fourier domain.

To assess the sampling requirements of the projection data
g(u, v, β) for this object, the 3-D Fourier Transform is taken.
CCB data is periodic in β, so the bandwidth analysis computes
the Fourier series coefficients for integer k,

G(ωu, ωv, k) =
∫∫∫

g(u, v, β)e−j(ωuu+ωvv+kβ) dβ dv du

(1)
Since the object is spatially limited, the cone beam projec-

tions will have finite support, implying that G(ωu, ωv, k) will
not be strictly bandlimited. Therefore, the bandwidth analysis
involves finding the essential support of (1), which is defined
as the region outside which the function decays exponentially.

III. DETERMINING THE ESSENTIAL SUPPORT OF G

A bound for the essential support of G is determined by an
analysis of ωu and ωv jointly, and k independently. These two
boundaries enclose a volume that serves as an estimate of the
essential support of G(ωu, ωv, k).



A. Bounds in ωu, ωv
Bounds on the support of the projection data in ωu and

ωv can be determined through an examination of the imaging
geometry. For simplicty, assume the source is located on the
x-axis. Consider a plane Πx(y, z) parallel to the detector plane.
The Fourier Transform (FT) of this 2-D slice of the object is
related to the 3-D FT of the object

F2(Πx)(ωy, ωz) =
∫
F (ωx, ωy, ωz)e−jωxxdx (2)

This 2-D FT will vanish for ω2
y + ω2

z > Ω2 because, by
assumption, F (ωx, ωy, ωz) ∼ 0 for ω2

x + ω2
y + ω2

z > Ω2. This
implies that the FT of the 2-D slice is essentially supported on
a disk of radius Ω in ωy , ωz .

Fig. 2. Magnification property of cone beam projections

The cone beam projection acts as a magnifier of this slice
(Figure 2), resulting in the data sampled on the detector plane

g(u, v) = Πx(
u(D − x)

D
,
v(D − x)

D
) (3)

The scaling property of the Fourier Transform implies that
G(ωu, ωv) will be essentially supported on a disk of radius
ΩD/(D − x). The total projection is the integral over all
planes intersecting the cylinder. The largest region support of
G(ωu, ωv) will result from x = −R, providing the bound

ω2
u + ω2

v ≤ Ω(D +R)
D

(4)

Since the object’s spatial and spectral support are rotationally
invariant with source position, this holds for all source posi-
tions.

B. Bounds in k

This analysis begins by considering the projection of a single
point inside the object. The union of the spectral supports of
the projections of all points in the object form a bound for
the essential support of (G). Omitting a weighting function in
β unimportant to the bandwidth analysis [3], the cone beam
projections of a point �x are

g(u, v, β) = δ(u− ux(β), v − vx(β), β) (5)

Expressing the point �x in cylindrical coordinates (R,ψ, z), the
detector position of the projected point can be written

ux(β) = DRsin(β+ψ)
D−Rcos(β+ψ) vx(β) = Dz

D−Rcos(β+ψ) (6)

Substituting this into (1) yields

G�x(ωu, ωv, k) =
∫ 2π

0

ej(ε(β)−kβ)dβ (7)

where
ε(β) = ωuux(β) + ωvvx(β) (8)

Since the integral in (7) covers the range (0, 2π), a simple
change of variables in β will remove ψ without modifying the
essential support of G.

Previous work [3] examining the essential support of inte-
grals of the form (7) expressed the bounds of the essential
support in terms of the Fourier series coefficients of ε(β). The
structure of the expressions in (6) allows for these coefficients
to be computed explicitly. Consider the function

h(β) = (1 − αcos(β))−1 (9)

for α = R/D ∈ [0, 1). The complex Fourier series coefficients
cn of h(β) can be determined by a contour integral and the
residue theorem yielding a closed form expression

cn = Sγn γ = a
1+

√
1−α2 S = 2√

1−α2 (10)

A similar derivation with sin(β) in the numerator of (9) yields
coefficients

cn =
j

2
(γ − γ−1)Sγn (11)

with S and γ defined as before. Therefore the complex Fourier
series coefficients of ε(β) can be expressed as

cn = (
j

2
ωuR(γ − γ−1) + ωvz)Sγn = Mγn (12)

or equivalently, ε(β) can be written

ε(β) = |M |
∑
n

γncos(nβ + � M) (13)

It is easy to see that functions of the form in (13) will result in
an essential support width that is linear with |M |. It has proven
difficult to derive an analytical expression for tight bounds
on the essential support of (7). However, the bounds depend
only on � (M), as γ is fixed by the geometric parameter R/D.
The essential support of (7) can be numerically evaluated with
|M | = 1 and tabulated over a range of � M . This table can be
used to determine a tight estimate of the support in k for any
ωu, ωv through the definition of M in (12).

The support in k is the union over all points in the object.
However, the support is sufficiently determined by a point on
the ‘rims’ of the cylinder, for example (R, 0, Z). This follows
from (12), where |M |, and therefore the essential support,
increases with R and z. Additionally, |M | increases with ωu,
ωv , so finding the maximum width in k only requires checking
frequencies on the circle ω2

u + ω2
v = (Ω(D +R)/D))2.

Defining Ω̃ = Ω(D +R)/D, the maximum value of |M | is
determined from (12) as

max |M |2 = max
ω2

u+ω2
v=Ω̃2

(
1
2
R(γ − γ−1)ωu)2 + (zωv)2

= max
ω2

u+ω2
v=Ω̃2

(Wuωu)2 + (Wvωv)2 (14)



which is maximized by ωv = 0 when W 2
u > W 2

v , and ωu =
0 when W 2

v > W 2
u . In the case of ωv = 0, the integral in

(7) reverts to the 2-D fan beam case, which is known to have
kmax = RΩ. There are effects of � M on the support in k, but
as long as |Wu| is substantially larger than |Wv|, the bound
of RΩ will be valid. For most imaging scenarios this will be
the case, as the required cone angle (in the v dimension) for
|Wv| > |Wu| is impractical. For example, a ratio R/D = 0.5,
representing a fan angle of 60°, would require Z > 1.7R which
is a cone angle of 120°. In the case of very large cone and fan
angles, then the maximum bounds in k will require checking
among the frequencies ω2

u + ω2
v = Ω̃2.

IV. SAMPLING REQUIREMENTS OF g(u, v, β)

The essential support of G as determined in the previous
section provide sampling requirements for g. Assuming a rec-
tangular (separable) sampling lattice in (u, v, β), the conditions
to avoid aliasing of the essential support of the FT of the
projection data yield the sampling requirements

Tu, Tv = D
2Ω(D+R)

Tβ = π
kmax

∼ π
RΩ

(15)

Since the derivation dealt with bounds in ωu, ωv separately from
bounds in k, the extent of the region of essential support will be
overestimated (as demonstrated next). A derivation that operates
jointly over ωu, ωv and k is required to provide the tightest
estimate. Additionally, other sampling schemes, such as a non-
rectangular lattice, may be able to pack the essential support
more tightly, resulting in lower sampling requirements.

V. SIMULATION

The bounds on the essential support of G are verified on
a test object. We define a small, spherically symmetric and
essentially bandlimited basis function, and create the full object
as a superposition of randomly scaled and shifted versions of
this basis function. The full object is bounded by a cylinder with
R = 256mm, Z = 256mm, and is spectrally limited to a sphere
with Ω = 2.5 cycles/cm. Analytical cone beam projections were
simulated using a source distance of D = 640 mm.

Figure 3A shows the essential support of the projection
data, and Figure 3B shows the estimated essential support
using the bounds in Section III. Figure 4A,B displays some
cuts through the essential support volume on a log-compressed
scale (darker colors represents larger values) with the estimated
bounds indicated by the bold line. The horizontal dashed lines
denote the source of the 1-D slices plotted in Figure 4C,D.
These 1-D plots through the spectral volume are shown on a
logarithmic scale, demonstrating the exponential decay outside
of the essential support. The estimated bounds in this case
are shown by vertical dashed lines. These figures demonstrate
that the derived bounds provide a reasonable estimate of the
essential support of G.
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Fig. 3. (A) Measured and (B) estimated essential support
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Fig. 4. Slices (A) ωv = 0.46Ω, (B) ωu = 0.46Ω, (C) ωu = 0.52Ω,
ωv = 0.46Ω and (D) ωu = 0.46Ω, ωv = 0.29Ω

VI. CONCLUSION

In this paper we examined the essential support of cone
beam projection data and determined sampling requirements
for a CCB scan. This analysis was performed for a flat panel
detector and cylindrical object. Future efforts are aimed at a
tighter estimate of the essential support for improved sampling
conditions. Although conservative, these bounds provide the
sampling requirements necessary for alias-free acquisition of
the CCB projection data.

REFERENCES

[1] F. Natterer, Sampling in Fan Beam Tomography. SIAM Journal Applied
Mathematics, pp. 358-380, 1993.

[2] L. Desbat et al., Sampling Conditions of 3D Parallel and Fan-Beam X-
Ray CT with Application to Helical Tomography. Physics in Medicine and
Biology, v. 49, p. 2377-90, 2004.

[3] J. Brokish, Fast Backprojection Algorithms for Divergent Beam Tomogra-
phy, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 2004.


