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ABSTRACT
We propose a new fast Feldkamp algorithm for 3-D cone beam to-
mography with a circular source trajectory. The algorithm is an
extension of our recent fast native 2-D fan-beam reconstruction al-
gorithm. It is based on a recursive hierarchical decomposition of
the cone-beam backprojection operation into successivelysmaller
sub-volumes. The algorithm reduces the computational complex-
ity of the reconstruction fromO(N4) to O(N3 log N). Simu-
lations demonstrate the efficiency of our algorithm, with 7-fold
speedup for a128 × 128 × 128 image. image. Speedups will
be much greater for images of more typical size encountered in
medicine.

1. INTRODUCTION

Cone-beam tomography is a three-dimensional extension of two-
dimensional fan-beam tomography. Rays diverging as a cone from
the source illuminate the object, and data corresponding toline
integrals along these rays is recorded on a planar or cylindrical
detector surface. Suchcone-beam projections are collected for
a multitude of source positions along asource orbit. The main
advantage of cone-beam acquisition is the reduction of datacol-
lection time. This is particularly important for real-timeimaging
of moving structures, such as the beating heart, or contrastagent
flow through the body. With the progress in planar detector tech-
nology, it is expected that next generation scanners will adopt the
cone-beam geometry.

Unfortunately, the computational complexity of the key back-
projection step in cone-beam reconstruction algorithms isO(N4),
making them prohibitively slow (or expensive, with parallel hard-
ware implementations) in most applications. In this paper we pro-
pose a fast method for cone-beam backprojection, that reduces this
cost toO(N3 log N), yielding multifold speedup in practice.

We focus on the popular single circle source orbit geometry,
in which the source moves around the object on a circular orbit.
This acquisition geometry can not provide complete data [1]and
the reconstructed images are therefore prone to inherent artifacts,
in particular away from the source plane. None the less, thisgeom-
etry is often the most practical, and the Feldkamp, or FDK algo-
rithm [2] developed for it is the reconstruction method mostoften
used in practice. Like all conventional 3D cone-beam reconstruc-
tion algorithms, the standard Feldkamp algorithm has an unfavor-
ableO(N4) computational complexity.
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Previous attempts to accelerate the Feldkamp algorithm for
cone-beam reconstruction include Turbell’s fast algorithms [3, 4],
which perform a fast backprojection on cone-beam data afterre-
binning to parallel-beam projections, using thelinks concept [5].
They therefore suffer from the drawbacks of rebinning – an addi-
tional computation cost to perform sufficiently accurate interpola-
tion. The reported speedup over the conventional Feldkamp algo-
rithm [2] for these algorithms is modest – about 30% for a256 ×
256×128 object, rising to 7-fold speedup for a1024×1024×512
3-D image.

The new fast Feldkamp algorithm proposed in this paper is de-
rived from our recent fast fan-beam backprojection algorithm [6].
An instance of the divide-and-conquer principle, the algorithm is
based on a decomposition of the cone-beam backprojection op-
eration into smaller sub-volumes. Using the key property that
smaller images require fewer projections for reconstruction, the
projections are decimated by a factor of two as the image vol-
ume is decomposed. Applied recursively, the algorithm requires
O(N3 log N) computations instead of the originalO(N4). Com-
puter simulations demonstrate that for a128 × 128 × 128 image,
our algorithm achieves about a 7-fold speedup over the original
algorithm with little visual quality degradation. This yields a pro-
jected 40-fold speedup for a1024×1024×L image, thus showing
greater promise in practice than other fast Feldkamp algorithms.

2. CONE-BEAM RECONSTRUCTION

We only discuss the case of planar equispaced detectors, where the
detectors are evenly spaced on a planar surface. The other common
case of detectors equiangularly spaced on a cylindrical surface can
be derived in a similar manner.

Figure 1 shows the cone-beam geometry with a single circular
orbit and planar detector. The source orbit lies on a circle~s(θ) =
[D cos(θ), D sin(θ), 0] of radiusD centered at the originO, in
the x, y plane. The detector plane, with coordinates(t1, t2), is
assumed, without loss of generality, to contain thez axis (which
coincides with thet2 axis), and be perpendicular to the source-to-
center lineSO.

The cone-beam projection(Pf)(θ, t1, t2) of the objectf at
source orbit positionθ and detector position(t1, t2) is the line
integral along the source ray parametrized by(θ, t1, t2). For par-
ticular~t andθ, the value of(Pf)(θ,~t) is a sample of the 3D x-ray
transform off .

Projections are acquired atP discrete source positionsθp =
p∆θ, p = 0, . . . P − 1 with uniform spacing∆θ = (θmax −
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Fig. 1. Cone-beam tomography with circular source orbit and pla-
nar equispaced detector.

θmin)/P . We call (Pf)(θp, ·) (for all values of~t) a projection
at source positionθp. The detector plane is usually sampled on a
uniform rectangular grid, with possibly different intervals T1 and
T2 on thet1 andt2 axes.

Feldkamp reconstruction of cone-beam data can be formulated
as a weighted filtered backprojection [2]. First, the cone-beam pro-
jections are individually weighted and ramp filtered, producing the
modified cone-beam projectionsg(p,~t), corresponding to source
positionsθp. For the sake of brevity, we refer tog(p, ·) just as
“cone-beam projection”. Next, the 3D image is reconstructed by a
weighted backprojection.

To define the backprojection operation, let~r = [x, y, z]T de-
note position in the 3D image (i.e., object), and let~τ (θ, ~r) =
[τ1(θ, ~r), τ2(θ, ~r)]T denote thet1, t2 position of the intersection
with the detector plane of the source ray passing through point ~r
and with source angleθ (see Fig. 1). Then

τ1(θ, ~r) =
D(y cos θ − x sin θ)

D + x cos θ + y sin θ
(1)

τ2(θ, ~r) =
Dz

D + x cos θ + y sin θ
. (2)

The weighted backprojection is then

f(~r) =

P−1∑

p=0

W (p∆θ, ~r)g[p, ~τ(p∆θ, ~r)]∆θ , (3)

whereW (θ, ~r) is an appropriate weight function. This discrete
backprojection formula approximates the integral expression for
the backprojection with projections measured for allθ. Note that
g(p,~t) is also sampled in~t. Hence, interpolation ofg in ~t is re-
quired to implement the backprojection, because~τ(p∆θ, ~r) does
not usually correspond to an available sample position. Theback-
projection formula (3) is identical to the 2-D fan-beam case, except
that in the latterτ is scalar, and~r two dimensional.

The computational cost of 3D cone-beam backprojection for
anN × N × N image withP projections iscN3P , because the
contributions ofP projections have to be accumulated in (3) for

each of theN3 image voxels. The constantc depends on im-
plementation details such as complexity of the interpolation. In
contrast, the computational cost of weighting and ramp filtering
is only O(PN2 log N) when the convolution is performed using
FFTs. Therefore, the cost of backprojection dominates the cost of
conventional cone-beam reconstruction, which has costO(PN3),
or O(N4), when, as is often the case,P = O(N). The situa-
tion is similar in 2D fan-beam reconstruction, where the complex-
ities of the filtering and backprojection steps areO(N2 log N) and
O(N3), respectively.

3. FAST FELDKAMP ALGORITHM

We first review the fast native fan-beam backprojection algorithm [6].
Its underlying idea is to decompose theN ×N image into smaller
subimages and to reconstruct each subimage individually.

Consider the backprojection operation for a sub-imagef ′(~r)

of f . Let f ′ = KM [~δ]f be a sub-image off of sizeM × M ,

centered at~δ. The backprojection onto subimagef ′ usingQ pro-
jections at source anglesp∆θ, p = 0 . . . Q − 1 is given by

f ′ = KM [~δ]f = BM, P [~δ]K̂M [~δ]g, (4)

whereBM, Q[~δ] is the associated backprojection operator, and

K̂M [~δ] is the operator that, for each rotation angle, truncatesg(p, ·)
to the support of the projection of the support of the subimage f ′.
That is, the backprojection ontof ′ can be obtained by a backpro-
jection of size(M, Q) of the appropriately truncated projections.

The fast backprojection algorithm uses the decomposition idea
with the following additional property. For fixed image resolution
(bandwidth), the number of projections needed to reconstruct an
image centered at the originO is proportional to the size of the
image [7]. Therefore, ifP projections are needed to reconstruct an
N ×N image, thenP ′ = P/2 projections suffice to reconstruct a
N/2×N/2 origin-centered image to the same resolution. The fast
backprojection algorithm is therefore based on reconstruction of a
subimagef ′ = KM [~δ]f from a reduced number of projections.

The actual reduction of the number of projections used to re-
construct a subimage must account for the fact that subimages are
not origin-centered. Therefore, truncated subimage projections
K̂M [~δ]g are first radially shifted so that their center aligns with
the projection of the origin, then the projections are angularly dec-
imated by a factorL by angular filtering followed by subsampling,
and then the projections are radially shifted back so their center
again aligns with the projection of the center~δ of the subimage.
This operation is represented by the operatorO[L, M,~δ] which is
a composition of the truncation, shift and angular decimation op-
erations.

With these definitions, the exact formula for backprojection
onto subimagef ′ is replaced by the approximation

f ′ = KM [~δ]f = BM, P/L[~δ]O[L, M,~δ]g, (5)

whereBM, P/L is a backprojection onto anM × M subimage

usingP/L projections. This leads to an approximate decomposi-
tion of the backprojection operation for a partitioned image, which
for L = 2 andM = N/2 has the form



f = BN, P [~0]g =
4∑

j = 1

BN/2, P/2[~δj ]O[2, N/2, ~δj ]g. (6)

Applying the decomposition recursively, the total cost of the
fast fan-beam reconstruction algorithm becomesO(N2 log N) [6].

Now consider the 3-D cone-beam backprojection. Figure 2
illustrates the sampling scheme. For a given source position, line
integrals are measured at uniformly spacedz intervals, such asz1,
z2. The detectors at a fixedz position form a line parallel to the
x-y plane and perpendicular to thez axis. Therefore, all detector
lines passing through the samez position from all source postions
form a plane parallel to thex-y plane, e.g., planesp1 andp2 in
Fig. 2. We refer to these planes asprojection planes.
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Fig. 2. Cone-beam geometry. Planesp1 andp2 contain x-ray pro-
jections for all source angles at detector positionsz = z1 and
z = z2.

For z = 0, the projection plane is thex-y plane and the data
collected from all source angles are the exact fan-beam projections
of the object on thex − y-plane. Therefore, the 2-D image on the
x − y-plane can be reconstructed using the fast fan-beam algo-
rithm. We desire a similar fast reconstruction algorithm for other
slices of the object atz 6= 0. The Feldkamp algorithm performs
the weighted backprojection for each pixel in a way that is very
similar to the fan-beam backprojection; hence, we propose afast
Feldkamp algorithm for 3-D cone-beam reconstruction as follows.

In our algorithm, each projection plane parallel to thex − y-
plane is treated as a group. The data on the projection plane are
viewed as the fan-beam projections of that plane, so that thewhole
data set is treated as stacked fan-beam projections of different
slices of the 3-D object. Therefore, for each slice, we can per-
form the same decompostion on the projection plane data as that
for fan-beam projections. Considering the decomposition simul-
taneously on all slices, the original volume is decomposed to four
”pillars” as in Fig. 3. For aa × b × c object, each sub-volume
has sizea/2 × b/2 × c. For each sub-volume, the projections are
shifted, angularly decimated, and shifted back slice-by-slice, as in

the fast fan-beam algorithm [6]. The overall effect is that for each
sub-volume, the total number of cone-beam projections (source
positions) for reconstruction is decreased by half.
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Fig. 3. Cone-beam decomposition. At each level, the volume is
uniformly partitioned into four in thex − y plane.

The recursion is continued until the cross sections of the 3-
D subimage inx − y plane are of some desired minimum size
Mmin, and then the backprojectionsBMmin, Pmin

performed us-
ing weighted backprojection (3). That is, each point is still recon-
structed using the Feldkamp algorithm, but with fewer cone pro-
jections. In the backprojection step, all the weighting parameters
are still calculated in the original coordinates. The cone-beam pro-
jections are processed as stacks of fan-beam projections; therefore,
the computational complexity is the same as performingO(N)
number of fast fan-beam backprojection, which isO(N3 log N),
for an image of sizeN × N × N .

The computational cost of hierarchical backprojection, which
is dominated by the radial shifting and angular filtering, isreduced
by using short filters for these operations. To control the approx-
imation error, it is useful to introduce oversampling of thedata.
An effective way to do so, is to perform one or moreexact de-
compositions at the top of the hierarchy, where although theimage
size is reduced, the number of view angles is not. The data then
becomes angularly oversampled. The number of exact decomposi-
tions is called thehold off factor. A holdoff of Q = 0 corresponds
to maximal angular decimation, whereas withQ = 1 the first de-
composition is exact, reducing the speedup by a factor of 2 but
improving accuracy.

4. NUMERICAL RESULTS

We tested the fast Feldkamp algorithm on a128 × 128 × 128 3-
D Shepp-Logan head phantom The distance from the x-ray source
to the center of the 3-D image was1.25 times the length of the
lateral. The fan and cone-beam angles were 1.17 and 1.5 radians,
respectively, which was barely enough to cover the whole object.
We used a375 × 375 detector plane and generated analytically
cone-beam projections at512 uniformly sampled source angles in



Fig. 4. Reconstruction results with equispaced planar detector.
The three rows, from top to bottom, arexy, yz, andxz slices.
The left column is the standard Feldkamp reconstruction, whereas
the middle and the right columns are the fast algorithm reconstruc-
tions with holdoffQ = 2 andQ = 1, respectively.

[0, 2π]. This resulted in a512 × 375 × 375 measurement data
set. We performed experiments for both equispaced and equiangu-
lar detector geometries. The results for the equiangular geometry
were essentially identical to those for the equispaced planar detec-
tor, and are not reported here.

Fig. 4 shows the cross sections of the 3-D phantom with re-
spect to thex, y, andz directions. Fig. 5 shows slices through re-
constructed images of Fig. 4. The images display the artifacts typ-
ical of the single circle geometry and the Feldkamp algorithm for
large values ofz. However, importantly, the differences between
the fast and conventional Feldkamp algorithms is very small. The
fast algorithm with holdoff factorQ = 2 is about three times faster
then the conventional algorithm, with little if any degradation in
image quality. Even with holdoff factorQ = 1, the image quality
is acceptable for some applications, with a 7-fold speedup.
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