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ABSTRACT

Previous attempts to accelerate the Feldkamp algorithm for

We propose a new fast Feldkamp algorithm for 3-D cone beam to- cone-beam reconstruction include Turbell's fast alganitt{3, 4],

mography with a circular source trajectory. The algoritleman
extension of our recent fast native 2-D fan-beam reconttruel-
gorithm. It is based on a recursive hierarchical decomjpositf
the cone-beam backprojection operation into successarabller
sub-volumes. The algorithm reduces the computational tamp
ity of the reconstruction fronO(N*) to O(N®log N). Simu-
lations demonstrate the efficiency of our algorithm, witfolt
speedup for d28 x 128 x 128 image. image. Speedups will
be much greater for images of more typical size encountered i
medicine.

1. INTRODUCTION

Cone-beam tomography is a three-dimensional extensionaf t
dimensional fan-beam tomography. Rays diverging as a cone f
the source illuminate the object, and data correspondinnéo
integrals along these rays is recorded on a planar or cydadr
detector surface. Suotone-beam projections are collected for
a multitude of source positions alongsaurce orbit. The main
advantage of cone-beam acquisition is the reduction of cialta
lection time. This is particularly important for real-tinf@aging
of moving structures, such as the beating heart, or coragestt
flow through the body. With the progress in planar detecton-te
nology, it is expected that next generation scanners wilpathe
cone-beam geometry.

Unfortunately, the computational complexity of the key kac
projection step in cone-beam reconstruction algorithnd(ia*),
making them prohibitively slow (or expensive, with parhhard-
ware implementations) in most applications. In this papeipwo-
pose a fast method for cone-beam backprojection, that esdtics
cost toO(N? log N), yielding multifold speedup in practice.

We focus on the popular single circle source orbit geometry,
in which the source moves around the object on a circulat.orbi
This acquisition geometry can not provide complete dataafi]
the reconstructed images are therefore prone to inhertfaicts,
in particular away from the source plane. None the lessgenin-
etry is often the most practical, and the Feldkamp, or FDK-alg
rithm [2] developed for it is the reconstruction method mufsén
used in practice. Like all conventional 3D cone-beam reirans
tion algorithms, the standard Feldkamp algorithm has aavant
ableO(N*) computational complexity.
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which perform a fast backprojection on cone-beam data edter
binning to parallel-beam projections, using fiaks concept [5].
They therefore suffer from the drawbacks of rebinning — adi-ad
tional computation cost to perform sufficiently accurateipola-
tion. The reported speedup over the conventional Feldkdgmp a
rithm [2] for these algorithms is modest — about 30% f@bé x
256 x 128 object, rising to 7-fold speedup forl@24 x 1024 x 512
3-D image.

The new fast Feldkamp algorithm proposed in this paper is de-
rived from our recent fast fan-beam backprojection alhaoni{6].
An instance of the divide-and-conquer principle, the &tgar is
based on a decomposition of the cone-beam backprojection op
eration into smaller sub-volumes. Using the key properit th
smaller images require fewer projections for reconstomgtihe
projections are decimated by a factor of two as the image vol-
ume is decomposed. Applied recursively, the algorithm iregu
O(N?1log N) computations instead of the origin@( N*). Com-
puter simulations demonstrate that for28 x 128 x 128 image,
our algorithm achieves about a 7-fold speedup over theraigi
algorithm with little visual quality degradation. This Yds a pro-
jected 40-fold speedup forl@24 x 1024 x L image, thus showing
greater promise in practice than other fast Feldkamp dlgus.

2. CONE-BEAM RECONSTRUCTION

We only discuss the case of planar equispaced detectorss tiee
detectors are evenly spaced on a planar surface. The othen@o
case of detectors equiangularly spaced on a cylindricldceican
be derived in a similar manner.

Figure 1 shows the cone-beam geometry with a single circular
orbit and planar detector. The source orbit lies on a cigtty =
[D cos(8), Dsin(#), 0] of radius D centered at the origi®, in
the z,y plane. The detector plane, with coordinates, t2), is
assumed, without loss of generality, to contain thaxis (which
coincides with the, axis), and be perpendicular to the source-to-
center lineSO.

The cone-beam projectiof® f)(0,t1,t2) of the objectf at
source orbit positiord and detector positioift1, t2) is the line
integral along the source ray parametrized(8y:1, t2). For par-
ticular'andd, the value of P f)(6, t) is a sample of the 3D x-ray
transform off.

Projections are acquired &t discrete source positiorts, =
pAb,p = 0,... P — 1 with uniform spacingAf = (Omax —



=

Fig. 1. Cone-beam tomography with circular source orbit and pla-
nar equispaced detector.

Omin)/P. We call (Pf)(6,,-) (for all values oft) a projection

at source positiod,. The detector plane is usually sampled on a
uniform rectangular grid, with possibly different intel¥&; and

T> on thet; andt; axes.

Feldkamp reconstruction of cone-beam data can be forntlilate
as a weighted filtered backprojection [2]. First, the corash pro-
jections are individually weighted and ramp filtered, prcidg the
modified cone-beam projectiorgp, ¢), corresponding to source
positionsé,. For the sake of brevity, we refer ig(p, -) just as
“cone-beam projection”. Next, the 3D image is reconstrditie a
weighted backprojection.

To define the backprojection operation, fet= [z, vy, 2]” de-
note position in the 3D image (i.e., object), and #9,7) =
[11(0,7),m2(0,7)]" denote thet1,t, position of the intersection
with the detector plane of the source ray passing throught poi
and with source anglé (see Fig. 1). Then

D(ycos® — xsinf)

n@.n = D+ xcosf + ysind @
Dz
(0.7 = D+ xcosf+ysinh @
The weighted backprojection is then
P-1
F7) =" W(pA0,7)glp, 7(pA0, M]A0, 3)
p=0

where W (0, 7) is an appropriate weight function. This discrete
backprojection formula approximates the integral expossor
the backprojection with projections measured fordalNote that
g(p, 1) is also sampled im. Hence, interpolation of in i'is re-
quired to implement the backprojection, becatispAd, 7) does
not usually correspond to an available sample position. bEtwé-
projection formula (3) is identical to the 2-D fan-beam caseept
that in the latterr is scalar, and’two dimensional.

each of theN?® image voxels. The constartdepends on im-
plementation details such as complexity of the interpotatiln
contrast, the computational cost of weighting and ramprifiite
is only O(PN?log N) when the convolution is performed using
FFTs. Therefore, the cost of backprojection dominates tisé af
conventional cone-beam reconstruction, which has@(():EtN3),

or O(N*), when, as is often the cas®, = O(N). The situa-
tion is similar in 2D fan-beam reconstruction, where the ptax-
ities of the filtering and backprojection steps &@V? log N) and
O(N?), respectively.

3. FAST FELDKAMP ALGORITHM

We first review the fast native fan-beam backprojection itigm [6].
Its underlying idea is to decompose tNex N image into smaller
subimages and to reconstruct each subimage individually.
Consider the backprojection operation for a sub-im#ge)
of f. Let f' = ICM[S]f be a sub-image of of size M x M,
centered af. The backprojection onto subimagé usingQ pro-
jections at source angleg\d, p =0...Q — 1 is given by

' = Kpl81f = Bag, pl61Ka 189, 4)

where BM,Q[S] is the associated backprojection operator, and

ICM [6] is the operator that, for each rotation angle, truncatgs-)
to the support of the projection of the support of the subienég
That is, the backprojection ontff can be obtained by a backpro-
jection of size(M, Q) of the appropriately truncated projections.

The fast backprojection algorithm uses the decompositiea i
with the following additional property. For fixed image regmn
(bandwidth), the number of projections needed to recoasan
image centered at the origif is proportional to the size of the
image [7]. Therefore, i projections are needed to reconstruct an
N x N image, thenP’ = P/2 projections suffice to reconstruct a
N/2 x N/2 origin-centered image to the same resolution. The fast
backprojection algorithm is therefore based on reconstmiof a
subimagef’ = KCp s [S]f from a reduced number of projections.

The actual reduction of the number of projections used to re-
construct a subimage must account for the fact that subisnage
not origin-centered. Therefore, truncated subimage ptiojes
ICM [S]g are first radially shifted so that their center aligns with
the projection of the origin, then the projections are aadyldec-
imated by a factol. by angular filtering followed by subsampling,
and then the projections are radially shifted back so theter
again aligns with the projection of the centepof the subimage.
This operation is represented by the oper&L., M,g] which is
a composition of the truncation, shift and angular deciomatp-
erations.

With these definitions, the exact formula for backprojettio
onto subimagg” is replaced by the approximation

' =K1 = By pyrBIOIL, M, g, (5)

whereB; P/L is a backprojection onto al/ x M subimage

The computational cost of 3D cone-beam backprojection for using P/L projections. This leads to an approximate decomposi-

anN x N x N image withP projections iscN3 P, because the
contributions of P projections have to be accumulated in (3) for

tion of the backprojection operation for a partitioned ireaghich
for L = 2andM = N/2 has the form



4
F =By, pllg= D Byso pplfjl02.N/2.5lg.  (6)
j=1

Applying the decomposition recursively, the total cost hué t
fast fan-beam reconstruction algorithm becor®4/2 log N) [6].
Now consider the 3-D cone-beam backprojection. Figure 2
illustrates the sampling scheme. For a given source pastiite
integrals are measured at uniformly spaeedtervals, such as;,
z2. The detectors at a fixed position form a line parallel to the
z-y plane and perpendicular to theaxis. Therefore, all detector
lines passing through the sam@osition from all source postions
form a plane parallel to the-y plane, e.g., planeg; andp: in
Fig. 2. We refer to these planessgjection planes.
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Fig. 2. Cone-beam geometry. Plan@sandp, contain x-ray pro-
jections for all source angles at detector positiens= z; and
Z = Z2.

For z = 0, the projection plane is the-y plane and the data
collected from all source angles are the exact fan-bearegtions
of the object on the: — y-plane. Therefore, the 2-D image on the

x — y-plane can be reconstructed using the fast fan-beam algo-

rithm. We desire a similar fast reconstruction algorithmdther
slices of the object at # 0. The Feldkamp algorithm performs
the weighted backprojection for each pixel in a way that is/ve
similar to the fan-beam backprojection; hence, we propdssta
Feldkamp algorithm for 3-D cone-beam reconstruction devic.

In our algorithm, each projection plane parallel to the- y-
plane is treated as a group. The data on the projection plane a
viewed as the fan-beam projections of that plane, so thatiivde
data set is treated as stacked fan-beam projections ofatfiffe
slices of the 3-D object. Therefore, for each slice, we can pe
form the same decompostion on the projection plane dataaas th
for fan-beam projections. Considering the decompositiotuk
taneously on all slices, the original volume is decomposedur
"pillars” as in Fig. 3. For aa x b x c object, each sub-volume
has size1/2 x b/2 x c. For each sub-volume, the projections are
shifted, angularly decimated, and shifted back slicelmesas in

the fast fan-beam algorithm [6]. The overall effect is tratdach
sub-volume, the total number of cone-beam projectionsr¢sou
positions) for reconstruction is decreased by half.

b/2

Four sub-volumes

Fig. 3. Cone-beam decomposition. At each level, the volume is
uniformly partitioned into four in the: — y plane.

The recursion is continued until the cross sections of the 3-
D subimage int — y plane are of some desired minimum size
Mmin, and then the backprojectiody; . p . performed us-
ing weighted backprojection (3). That is, each point id stiton-
structed using the Feldkamp algorithm, but with fewer core p
jections. In the backprojection step, all the weightingapaeters
are still calculated in the original coordinates. The cbeam pro-
jections are processed as stacks of fan-beam projectlmrefore,
the computational complexity is the same as performingV)
number of fast fan-beam backprojection, whictOgN? log N),
for an image of sizéV x N x N.

The computational cost of hierarchical backprojectioniclvh
is dominated by the radial shifting and angular filteringeiduced
by using short filters for these operations. To control theray-
imation error, it is useful to introduce oversampling of tfeta.
An effective way to do so, is to perform one or maect de-
compositions at the top of the hierarchy, where althouglintage
size is reduced, the number of view angles is not. The data the
becomes angularly oversampled. The number of exact decmpo
tions is called thénold off factor. A holdoff of @ = 0 corresponds
to maximal angular decimation, whereas wigh= 1 the first de-
composition is exact, reducing the speedup by a factor oft2 bu
improving accuracy.

4. NUMERICAL RESULTS

We tested the fast Feldkamp algorithm oh28 x 128 x 128 3-

D Shepp-Logan head phantom The distance from the x-ray sourc
to the center of the 3-D image was25 times the length of the
lateral. The fan and cone-beam angles were 1.17 and 1.5w&adia
respectively, which was barely enough to cover the wholeabj
We used &375 x 375 detector plane and generated analytically
cone-beam projections &t2 uniformly sampled source angles in
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Fig. 4. Reconstruction results with equispaced planar detecta 0 .
The three rows, from top to bottom, axgy, yz, andzz slices.

The left column is the standard Feldkamp reconstructioreredis  -0.02 L L L L L L
the middle and the right columns are the fast algorithm rstran- @ 0 60 8 100 120
tions with holdoff@ = 2 and@ = 1, respectively.
Fig. 5. Plots through images in Fig. 4. From top to bottom: 102-nd
row of the top row images; 80-th row of the middle row images;
[0,27]. This resulted in &12 x 375 x 375 measurement data  @nd 81-st column of the bottom row images. Standard Feldkamp
set. We performed experiments for both equispaced andregjuia reconstruction in solid line, and dashdot an_d dotted limegie
lar detector geometries. The results for the equiangulametry fast algorithm with holdoffs 2, and 1, respectively.
were essentially identical to those for the equispacedgpldetec-
tor, and are not reported here.

Fig. 4 shows the cross sections of the 3-D phantom with re-  Pack-projection,” tech. rep., Department of Electricagkn
spect to ther, y, andz directions. Fig. 5 shows slices through re- neering, Linkoping universitet, 1997.
constructed images of Fig. 4. The images display the atsitgp- [6] S.Xiao, Y. Bresler, and D. C. Munson, Jr., “@&(log n) native
ical of the single circle geometry and the Feldkamp algarifor fan-beam tomographic reconstruction,” finoc. of IEEE In-
large values of. However, importantly, the differences between ternational Symposium on Biomedical Imaging (1SBI), (Wash-
the fast and conventional Feldkamp algorithms is very snTéie ington, D. C.), pp. 824-827, July 2002.

fast algorithm with holdoff facto) = 2 is about three times faster [7]
then the conventional algorithm, with little if any degréda in

image quality. Even with holdoff factap = 1, the image quality

is acceptable for some applications, with a 7-fold speedup.

F. Natterer and F. Wbbeling,Mathematical methodsin Image
Reconstruction. Philadelphia: SIAM, 2001.
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